Institut d'Astronomie et d'Astrophysique, Université libre de Bruxelles (ULB), CP 226, 1050 Bruxelles, Belgium.
Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS, F-34095 Montpellier, France.
Nature. 2015 Jan 8;517(7533):174-6. doi: 10.1038/nature14050.
Roughly half of the heavy elements (atomic mass greater than that of iron) are believed to be synthesized in the late evolutionary stages of stars with masses between 0.8 and 8 solar masses. Deep inside the star, nuclei (mainly iron) capture neutrons and progressively build up (through the slow-neutron-capture process, or s-process) heavier elements that are subsequently brought to the stellar surface by convection. Two neutron sources, activated at distinct temperatures, have been proposed: (13)C and (22)Ne, each releasing one neutron per α-particle ((4)He) captured. To explain the measured stellar abundances, stellar evolution models invoking the (13)C neutron source (which operates at temperatures of about one hundred million kelvin) are favoured. Isotopic ratios in primitive meteorites, however, reflecting nucleosynthesis in the previous generations of stars that contributed material to the Solar System, point to higher temperatures (more than three hundred million kelvin), requiring at least a late activation of (22)Ne (ref. 1). Here we report a determination of the s-process temperature directly in evolved low-mass giant stars, using zirconium and niobium abundances, independently of stellar evolution models. The derived temperature supports (13)C as the s-process neutron source. The radioactive pair (93)Zr-(93)Nb used to estimate the s-process temperature also provides, together with the pair (99)Tc-(99)Ru, chronometric information on the time elapsed since the start of the s-process, which we determine to be one million to three million years.
大约一半的重元素(原子质量大于铁)被认为是在质量为 0.8 到 8 个太阳质量的恒星的晚期演化阶段合成的。在恒星的内部深处,原子核(主要是铁)捕获中子,并通过慢中子捕获过程(或 s 过程)逐步构建更重的元素,这些元素随后通过对流被带到恒星表面。已经提出了两种中子源,在不同的温度下激活:(13)C 和 (22)Ne,每个释放一个中子,每个 α 粒子 ((4)He) 捕获一个。为了解释测量到的恒星丰度,调用 (13)C 中子源(在约 1 亿开尔文的温度下运行)的恒星演化模型更受欢迎。然而,原始陨石中的同位素比值反映了前几代恒星的核合成,这些恒星为太阳系贡献了物质,指向更高的温度(超过 3 亿开尔文),这至少需要晚期激活 (22)Ne(参考文献 1)。在这里,我们使用锆和铌丰度,独立于恒星演化模型,直接在演化后的低质量巨星中确定 s 过程温度。得出的温度支持 (13)C 作为 s 过程中子源。用于估计 s 过程温度的放射性对 (93)Zr-(93)Nb 与对 (99)Tc-(99)Ru 一起,为 s 过程开始以来的时间流逝提供了计时信息,我们确定为 100 万到 300 万年。