Kaback H Ronald
Department of Physiology and Department of Microbiology, Immunology, & Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles, CA 90095
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1259-64. doi: 10.1073/pnas.1419325112. Epub 2015 Jan 7.
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H(+) across the Escherichia coli membrane (galactoside/H(+) symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H(+) symport in the absence of the H(+) electrochemical gradient (∆µ̃H+) is deprotonation, whereas in the presence of ∆µ̃H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not ∆µ̃H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in Kd for sugar on either side of the membrane, but the pKa (the affinity for H(+)) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, ∆µ̃H+ acts kinetically to control the rate of the process.
乳糖通透酶(LacY)是最大的膜转运蛋白家族的一个范例,它催化半乳糖苷和H⁺跨大肠杆菌膜的偶联转运(半乳糖苷/H⁺同向转运)。最初的X射线结构揭示了N端和C端结构域,每个结构域都有六个大致不规则的跨膜螺旋,围绕着一个通向细胞质的水腔。最近,获得了一个具有狭窄周质开口和被封闭半乳糖苷的结构,证实了许多观察结果,并表明糖结合涉及诱导契合。LacY通过交替访问机制催化同向转运。45年多来的实验结果表明:(i)在没有H⁺电化学梯度(∆µ̃H⁺)的情况下,乳糖/H⁺同向转运的限速步骤是去质子化,而在有∆µ̃H⁺的情况下,限速步骤是脱辅基LacY在膜另一侧的开放;(ii)LacY必须被质子化才能结合半乳糖苷(结合的pK约为10.5);(iii)半乳糖苷的结合和解离,而不是∆µ̃H⁺,是交替访问的驱动力;(iv)半乳糖苷结合涉及诱导契合,导致向经历交替访问的封闭中间体转变;(v)半乳糖苷解离,释放结合能;(vi)精氨酸302靠近质子化的谷氨酸325,导致去质子化。半乳糖苷逆浓度梯度积累并不涉及膜两侧糖的解离常数(Kd)的变化,但pKa(对H⁺的亲和力)显著降低。因此,转运是由化学渗透驱动的,但与预期相反,∆µ̃H⁺在动力学上控制着该过程的速率。