Xu Wenyan, Ouellette Adam M, Wawrzak Zdzislaw, Shriver Storm J, Anderson Spencer M, Zhao Linlin
Department of Chemistry and Biochemistry and ‡Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States.
Biochemistry. 2015 Jan 27;54(3):639-51. doi: 10.1021/bi5014936. Epub 2015 Jan 13.
The (5'S)-8,5'-cyclo-2'-deoxyguanosine (S-cdG) lesion is produced from reactions of DNA with hydroxyl radicals generated from ionizing radiation or endogenous oxidative metabolisms. An elevated level of S-cdG has been detected in Xeroderma pigmentosum, Cockayne syndrome, breast cancer patients, and aged mice. S-dG blocks DNA replication and transcription in vitro and in human cells and produces mutant replication and transcription products in vitro and in vivo. Major cellular protection against S-dG includes nucleotide excision repair and translesion DNA synthesis. We used kinetic and crystallographic approaches to elucidate the molecular mechanisms of S-cdG-induced DNA replication stalling using model B-family Sulfolobus solfataricus P2 DNA polymerase B1 (Dpo1) and Y-family S. solfataricus P2 DNA polymerase IV (Dpo4). Dpo1 and Dpo4 inefficiently bypassed S-cdG with dCTP preferably incorporated and dTTP (for Dpo4) or dATP (for Dpo1) misincorporated. Pre-steady-state kinetics and crystallographic data mechanistically explained the low-efficiency bypass. For Dpo1, S-cdG attenuated Kd,dNTP,app and kpol. For Dpo4, the S-cdG-adducted duplex caused a 6-fold decrease in Dpo4:DNA binding affinity and significantly reduced the concentration of the productive Dpo4:DNA:dCTP complex. Consistent with the inefficient bypass, crystal structures of Dpo4:DNA(S-cdG):dCTP (error-free) and Dpo4:DNA(S-cdG):dTTP (error-prone) complexes were catalytically incompetent. In the Dpo4:DNA(S-cdG):dTTP structure, S-cdG induced a loop structure and caused an unusual 5'-template base clustering at the active site, providing the first structural evidence of the previously suggested template loop structure that can be induced by a cyclopurine lesion. Together, our results provided mechanistic insights into S-cdG-induced DNA replication stalling.
(5'S)-8,5'-环-2'-脱氧鸟苷(S-cdG)损伤是由DNA与电离辐射或内源性氧化代谢产生的羟基自由基反应生成的。在着色性干皮病、科凯恩综合征、乳腺癌患者和老年小鼠中已检测到S-cdG水平升高。S-dG在体外和人类细胞中会阻断DNA复制和转录,并在体外和体内产生突变的复制和转录产物。细胞对S-dG的主要保护机制包括核苷酸切除修复和跨损伤DNA合成。我们使用动力学和晶体学方法,利用模式B族嗜热栖热菌P2 DNA聚合酶B1(Dpo1)和Y族嗜热栖热菌P2 DNA聚合酶IV(Dpo4),阐明S-cdG诱导DNA复制停滞的分子机制。Dpo1和Dpo4绕过S-cdG的效率较低,优先掺入dCTP,且Dpo4会错误掺入dTTP,Dpo1会错误掺入dATP。稳态前动力学和晶体学数据从机制上解释了这种低效率的绕过。对于Dpo1,S-cdG降低了Kd,dNTP,app和kpol。对于Dpo4,S-cdG加合物双链使Dpo4与DNA的结合亲和力降低了6倍,并显著降低了有活性的Dpo4:DNA:dCTP复合物的浓度。与低效绕过一致,Dpo4:DNA(S-cdG):dCTP(无错误)和Dpo4:DNA(S-cdG):dTTP(易出错)复合物的晶体结构没有催化活性。在Dpo4:DNA(S-cdG):dTTP结构中,S-cdG诱导形成一个环结构,并在活性位点导致异常的5'-模板碱基聚集,这为之前提出 的可由环嘌呤损伤诱导的模板环结构提供了首个结构证据。总之,我们的结果为S-cdG诱导的DNA复制停滞提供了机制上的见解。