Hosseini Mohammad-Parsa, Nazem-Zadeh Mohammad R, Mahmoudi Fariborz, Ying Hao, Soltanian-Zadeh Hamid
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1047-50. doi: 10.1109/EMBC.2014.6943773.
Surgical treatment is suggested for seizure control in medically intractable epilepsy patients. Detailed pre-surgical evaluation and lateralization using Magnetic Resonance Images (MRI) is expected to result in a successful surgical outcome. In this study, an optimized pattern recognition approach is proposed for lateralization of mesial Temporal Lobe Epilepsy (mTLE) patients using asymmetry of imaging indices of hippocampus. T1-weighted and Fluid-Attenuated Inversion Recovery (FLAIR) images of 76 symptomatic mTLE patients are considered. First, hippocampus is segmented using automatic and manual segmentation methods; then, volumetric and intensity features are extracted from the MR images. A nonlinear Support Vector Machine (SVM) with optimized Gaussian Radial Basis Function (GRBF) kernel is used to classify the imaging features. Using leave-one-out cross validation, this method results in a correct lateralization rate of 82%, a probability of detection for the left side of 0.90 (with false alarm probability of 0.04) and a probability of detection for the right side of 0.69 (with zero false alarm probability). The lateralization results are compared to linear SVM, multi-layer perceptron Artificial Neural Network (ANN), and volumetry and FLAIR asymmetry analysis. This lateralization method is suggested for pre-surgical evaluation using MRI before surgical treatment in mTLE patients. It achieves a more correct lateralization rate and fewer false positives.
对于药物治疗难以控制癫痫发作的患者,建议采用手术治疗。使用磁共振成像(MRI)进行详细的术前评估和定位,有望获得成功的手术结果。在本研究中,提出了一种优化的模式识别方法,用于利用海马体成像指标的不对称性对内侧颞叶癫痫(mTLE)患者进行定位。研究考虑了76例症状性mTLE患者的T1加权和液体衰减反转恢复(FLAIR)图像。首先,使用自动和手动分割方法对海马体进行分割;然后,从MR图像中提取体积和强度特征。使用具有优化高斯径向基函数(GRBF)核的非线性支持向量机(SVM)对成像特征进行分类。采用留一法交叉验证,该方法的正确定位率为82%,左侧检测概率为0.90(误报概率为0.04),右侧检测概率为0.69(误报概率为零)。将定位结果与线性SVM、多层感知器人工神经网络(ANN)以及体积测量和FLAIR不对称性分析进行比较。建议在mTLE患者手术治疗前使用MRI进行术前评估时采用这种定位方法。它实现了更高的正确定位率和更少的假阳性。