Suppr超能文献

用于磁共振图像中致痫海马体侧化的具有非线性核优化的支持向量机

Support Vector Machine with nonlinear-kernel optimization for lateralization of epileptogenic hippocampus in MR images.

作者信息

Hosseini Mohammad-Parsa, Nazem-Zadeh Mohammad R, Mahmoudi Fariborz, Ying Hao, Soltanian-Zadeh Hamid

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1047-50. doi: 10.1109/EMBC.2014.6943773.

Abstract

Surgical treatment is suggested for seizure control in medically intractable epilepsy patients. Detailed pre-surgical evaluation and lateralization using Magnetic Resonance Images (MRI) is expected to result in a successful surgical outcome. In this study, an optimized pattern recognition approach is proposed for lateralization of mesial Temporal Lobe Epilepsy (mTLE) patients using asymmetry of imaging indices of hippocampus. T1-weighted and Fluid-Attenuated Inversion Recovery (FLAIR) images of 76 symptomatic mTLE patients are considered. First, hippocampus is segmented using automatic and manual segmentation methods; then, volumetric and intensity features are extracted from the MR images. A nonlinear Support Vector Machine (SVM) with optimized Gaussian Radial Basis Function (GRBF) kernel is used to classify the imaging features. Using leave-one-out cross validation, this method results in a correct lateralization rate of 82%, a probability of detection for the left side of 0.90 (with false alarm probability of 0.04) and a probability of detection for the right side of 0.69 (with zero false alarm probability). The lateralization results are compared to linear SVM, multi-layer perceptron Artificial Neural Network (ANN), and volumetry and FLAIR asymmetry analysis. This lateralization method is suggested for pre-surgical evaluation using MRI before surgical treatment in mTLE patients. It achieves a more correct lateralization rate and fewer false positives.

摘要

对于药物治疗难以控制癫痫发作的患者,建议采用手术治疗。使用磁共振成像(MRI)进行详细的术前评估和定位,有望获得成功的手术结果。在本研究中,提出了一种优化的模式识别方法,用于利用海马体成像指标的不对称性对内侧颞叶癫痫(mTLE)患者进行定位。研究考虑了76例症状性mTLE患者的T1加权和液体衰减反转恢复(FLAIR)图像。首先,使用自动和手动分割方法对海马体进行分割;然后,从MR图像中提取体积和强度特征。使用具有优化高斯径向基函数(GRBF)核的非线性支持向量机(SVM)对成像特征进行分类。采用留一法交叉验证,该方法的正确定位率为82%,左侧检测概率为0.90(误报概率为0.04),右侧检测概率为0.69(误报概率为零)。将定位结果与线性SVM、多层感知器人工神经网络(ANN)以及体积测量和FLAIR不对称性分析进行比较。建议在mTLE患者手术治疗前使用MRI进行术前评估时采用这种定位方法。它实现了更高的正确定位率和更少的假阳性。

相似文献

1
Support Vector Machine with nonlinear-kernel optimization for lateralization of epileptogenic hippocampus in MR images.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1047-50. doi: 10.1109/EMBC.2014.6943773.
2
Data mining MR image features of select structures for lateralization of mesial temporal lobe epilepsy.
PLoS One. 2018 Aug 1;13(8):e0199137. doi: 10.1371/journal.pone.0199137. eCollection 2018.
4
Comparison of multimodal findings on epileptogenic side in temporal lobe epilepsy using self-organizing maps.
MAGMA. 2022 Apr;35(2):249-266. doi: 10.1007/s10334-021-00948-7. Epub 2021 Aug 4.
5
Contribution of Quantitative Amygdalar MR FLAIR Signal Analysis for Lateralization of Mesial Temporal Lobe Epilepsy.
J Neuroimaging. 2018 Nov;28(6):666-675. doi: 10.1111/jon.12549. Epub 2018 Aug 1.
6
Lateralization of temporal lobe epilepsy by multimodal multinomial hippocampal response-driven models.
J Neurol Sci. 2014 Dec 15;347(1-2):107-18. doi: 10.1016/j.jns.2014.09.029. Epub 2014 Sep 28.
7
Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods.
Neuroimage. 2011 Jan;54 Suppl 1:S218-26. doi: 10.1016/j.neuroimage.2010.03.066. Epub 2010 Mar 29.
8
Mesial temporal lobe epilepsy: Revisiting the relation of hippocampal volumetry with memory deficits.
Epilepsy Behav. 2019 Nov;100(Pt A):106516. doi: 10.1016/j.yebeh.2019.106516. Epub 2019 Sep 28.
9
Lateralization of epileptic foci by magnetic resonance imaging in temporal lobe epilepsy.
J Neuroimaging. 1991 Nov;1(4):163-7. doi: 10.1111/jon199114163.

引用本文的文献

2
Artificial intelligence in epilepsy - applications and pathways to the clinic.
Nat Rev Neurol. 2024 Jun;20(6):319-336. doi: 10.1038/s41582-024-00965-9. Epub 2024 May 8.
3
Application of TBSS-based machine learning models in the diagnosis of pediatric autism.
Front Neurol. 2023 Jan 18;13:1078147. doi: 10.3389/fneur.2022.1078147. eCollection 2022.
4
Clinical Application of Machine Learning Models for Brain Imaging in Epilepsy: A Review.
Front Neurosci. 2021 Jun 22;15:684825. doi: 10.3389/fnins.2021.684825. eCollection 2021.

本文引用的文献

1
Three cuts method for identification of COPD.
Acta Med Iran. 2013;51(11):771-8.
2
Uncertainty in assessment of radiation-induced diffusion index changes in individual patients.
Phys Med Biol. 2013 Jun 21;58(12):4277-96. doi: 10.1088/0031-9155/58/12/4277. Epub 2013 Jun 4.
3
Detection and Severity Scoring of Chronic Obstructive Pulmonary Disease Using Volumetric Analysis of Lung CT Images.
Iran J Radiol. 2012 Mar;9(1):22-7. doi: 10.5812/iranjradiol.6759. Epub 2012 Mar 25.
4
Comparison of manual and automated determination of hippocampal volumes in MCI and early AD.
Brain Imaging Behav. 2010 Mar;4(1):86-95. doi: 10.1007/s11682-010-9088-x.
5
Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods.
Neuroimage. 2011 Jan;54 Suppl 1:S218-26. doi: 10.1016/j.neuroimage.2010.03.066. Epub 2010 Mar 29.
6
FLAIR signal and texture analysis for lateralizing mesial temporal lobe epilepsy.
Neuroimage. 2010 Jan 15;49(2):1559-71. doi: 10.1016/j.neuroimage.2009.08.064. Epub 2009 Sep 8.
7
Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts.
Neuroimage. 2008 Dec;43(4):708-20. doi: 10.1016/j.neuroimage.2008.07.058. Epub 2008 Aug 12.
10
Mesial temporal lobe epilepsy: what have we learned?
Neuroscientist. 2001 Aug;7(4):340-52. doi: 10.1177/107385840100700410.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验