Suppr超能文献

颞叶癫痫患者磁共振图像中海马体自动分割方法的比较性能评估

Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients.

作者信息

Hosseini Mohammad-Parsa, Nazem-Zadeh Mohammad-Reza, Pompili Dario, Jafari-Khouzani Kourosh, Elisevich Kost, Soltanian-Zadeh Hamid

机构信息

Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854 and Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, Michigan 48202.

Medical Image Analysis Laboratory, Departments of Radiology and Research Administration, Henry Ford Health System, Detroit, Michigan 48202.

出版信息

Med Phys. 2016 Jan;43(1):538. doi: 10.1118/1.4938411.

Abstract

PURPOSE

Segmentation of the hippocampus from magnetic resonance (MR) images is a key task in the evaluation of mesial temporal lobe epilepsy (mTLE) patients. Several automated algorithms have been proposed although manual segmentation remains the benchmark. Choosing a reliable algorithm is problematic since structural definition pertaining to multiple edges, missing and fuzzy boundaries, and shape changes varies among mTLE subjects. Lack of statistical references and guidance for quantifying the reliability and reproducibility of automated techniques has further detracted from automated approaches. The purpose of this study was to develop a systematic and statistical approach using a large dataset for the evaluation of automated methods and establish a method that would achieve results better approximating those attained by manual tracing in the epileptogenic hippocampus.

METHODS

A template database of 195 (81 males, 114 females; age range 32-67 yr, mean 49.16 yr) MR images of mTLE patients was used in this study. Hippocampal segmentation was accomplished manually and by two well-known tools (FreeSurfer and hammer) and two previously published methods developed at their institution [Automatic brain structure segmentation (ABSS) and LocalInfo]. To establish which method was better performing for mTLE cases, several voxel-based, distance-based, and volume-based performance metrics were considered. Statistical validations of the results using automated techniques were compared with the results of benchmark manual segmentation. Extracted metrics were analyzed to find the method that provided a more similar result relative to the benchmark.

RESULTS

Among the four automated methods, ABSS generated the most accurate results. For this method, the Dice coefficient was 5.13%, 14.10%, and 16.67% higher, Hausdorff was 22.65%, 86.73%, and 69.58% lower, precision was 4.94%, -4.94%, and 12.35% higher, and the root mean square (RMS) was 19.05%, 61.90%, and 65.08% lower than LocalInfo, FreeSurfer, and hammer, respectively. The Bland-Altman similarity analysis revealed a low bias for the ABSS and LocalInfo techniques compared to the others.

CONCLUSIONS

The ABSS method for automated hippocampal segmentation outperformed other methods, best approximating what could be achieved by manual tracing. This study also shows that four categories of input data can cause automated segmentation methods to fail. They include incomplete studies, artifact, low signal-to-noise ratio, and inhomogeneity. Different scanner platforms and pulse sequences were considered as means by which to improve reliability of the automated methods. Other modifications were specially devised to enhance a particular method assessed in this study.

摘要

目的

从磁共振(MR)图像中分割海马体是评估内侧颞叶癫痫(mTLE)患者的一项关键任务。尽管手动分割仍是基准方法,但已经提出了几种自动算法。由于mTLE患者之间与多个边缘、缺失和模糊边界以及形状变化相关的结构定义各不相同,选择一种可靠的算法存在问题。缺乏用于量化自动技术可靠性和可重复性的统计参考和指导进一步削弱了自动方法的应用。本研究的目的是开发一种系统的统计方法,使用大型数据集评估自动方法,并建立一种能在致痫海马体中获得更接近手动追踪结果的方法。

方法

本研究使用了一个包含195例mTLE患者MR图像的模板数据库(81例男性,114例女性;年龄范围32 - 67岁,平均49.16岁)。海马体分割通过手动以及两种知名工具(FreeSurfer和hammer)和该机构之前发表的两种方法[自动脑结构分割(ABSS)和LocalInfo]来完成。为确定哪种方法在mTLE病例中表现更好,考虑了几种基于体素、基于距离和基于体积的性能指标。将使用自动技术得到的结果与基准手动分割结果进行统计验证比较。对提取的指标进行分析,以找出相对于基准提供更相似结果的方法。

结果

在四种自动方法中,ABSS产生了最准确的结果。对于该方法,与LocalInfo、FreeSurfer和hammer相比,Dice系数分别高出5.13%、14.10%和16.67%,豪斯多夫距离分别低22.65%、86.73%和69.58%,精度分别高4.94%、 - 4.94%和12.35%,均方根(RMS)分别低19.05%、61.90%和65.08%。Bland - Altman相似性分析显示,与其他方法相比,ABSS和LocalInfo技术的偏差较低。

结论

用于自动海马体分割的ABSS方法优于其他方法,最接近手动追踪所能达到的效果。本研究还表明,四类输入数据可能导致自动分割方法失败。它们包括不完整的研究、伪影、低信噪比和不均匀性。考虑了不同的扫描仪平台和脉冲序列,作为提高自动方法可靠性的手段。还专门设计了其他修改措施来增强本研究中评估的特定方法。

相似文献

2
Statistical validation of automatic methods for hippocampus segmentation in MR images of epileptic patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4707-10. doi: 10.1109/EMBC.2014.6944675.
3
Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods.
Neuroimage. 2011 Jan;54 Suppl 1:S218-26. doi: 10.1016/j.neuroimage.2010.03.066. Epub 2010 Mar 29.
4
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
6
Surface-based multi-template automated hippocampal segmentation: application to temporal lobe epilepsy.
Med Image Anal. 2012 Oct;16(7):1445-55. doi: 10.1016/j.media.2012.04.008. Epub 2012 May 3.
8
Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities.
Neuroimage. 2012 Feb 15;59(4):3178-86. doi: 10.1016/j.neuroimage.2011.11.040. Epub 2011 Nov 25.
9
Hippocampal volume assessment in temporal lobe epilepsy: How good is automated segmentation?
Epilepsia. 2009 Dec;50(12):2586-92. doi: 10.1111/j.1528-1167.2009.02243.x. Epub 2009 Aug 13.
10
Subcortical and cerebellar atrophy in mesial temporal lobe epilepsy revealed by automatic segmentation.
Epilepsy Res. 2008 May;79(2-3):130-8. doi: 10.1016/j.eplepsyres.2008.01.006. Epub 2008 Mar 21.

引用本文的文献

1
Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer.
Front Aging Neurosci. 2024 Sep 3;16:1459652. doi: 10.3389/fnagi.2024.1459652. eCollection 2024.
2
Hippocampal subfield volumetric changes after radiotherapy for brain metastases.
Neurooncol Adv. 2024 Mar 20;6(1):vdae040. doi: 10.1093/noajnl/vdae040. eCollection 2024 Jan-Dec.
3
Deep Learning for Autism Diagnosis and Facial Analysis in Children.
Front Comput Neurosci. 2022 Jan 20;15:789998. doi: 10.3389/fncom.2021.789998. eCollection 2021.
4
Distinct patterns of hippocampal subfield volume loss in left and right mesial temporal lobe epilepsy.
Neurol Sci. 2021 Apr;42(4):1411-1421. doi: 10.1007/s10072-020-04653-6. Epub 2020 Aug 12.
6
Stimulation Modeling on Three-Dimensional Anisotropic Diffusion of MRI Tracer in the Brain Interstitial Space.
Front Neuroinform. 2019 Feb 19;13:6. doi: 10.3389/fninf.2019.00006. eCollection 2019.
8
Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework.
Neuroinformatics. 2019 Jul;17(3):451-472. doi: 10.1007/s12021-018-9410-0.
9
Clinical validation of automated hippocampal segmentation in temporal lobe epilepsy.
Neuroimage Clin. 2018;20:1139-1147. doi: 10.1016/j.nicl.2018.09.032. Epub 2018 Oct 10.
10
A comparison of manual tracing and FreeSurfer for estimating hippocampal volume over the adult lifespan.
Hum Brain Mapp. 2018 Jun;39(6):2500-2513. doi: 10.1002/hbm.24017. Epub 2018 Feb 21.

本文引用的文献

1
Semi-automated hippocampal segmentation in people with cognitive impairment using an age appropriate template for registration.
J Magn Reson Imaging. 2015 Dec;42(6):1631-8. doi: 10.1002/jmri.24966. Epub 2015 Jul 3.
2
Statistical validation of automatic methods for hippocampus segmentation in MR images of epileptic patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4707-10. doi: 10.1109/EMBC.2014.6944675.
3
Support Vector Machine with nonlinear-kernel optimization for lateralization of epileptogenic hippocampus in MR images.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1047-50. doi: 10.1109/EMBC.2014.6943773.
4
Automated versus manual hippocampal segmentation in preoperative and postoperative patients with epilepsy.
Epilepsia. 2014 Sep;55(9):1374-9. doi: 10.1111/epi.12694. Epub 2014 Jun 25.
5
Multiatlas segmentation as nonparametric regression.
IEEE Trans Med Imaging. 2014 Sep;33(9):1803-17. doi: 10.1109/TMI.2014.2321281. Epub 2014 Apr 30.
6
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
8
Three cuts method for identification of COPD.
Acta Med Iran. 2013;51(11):771-8.
9
Automated hippocampal segmentation in patients with epilepsy: available free online.
Epilepsia. 2013 Dec;54(12):2166-73. doi: 10.1111/epi.12408. Epub 2013 Oct 23.
10
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验