Suppr超能文献

利用功能性电刺激和机器人手臂支撑进行被动伸展和抓握。

Passive reach and grasp with functional electrical stimulation and robotic arm support.

作者信息

Westerveld Ard J, Schouten Alfred C, Veltink Peter H, van der Kooij Herman

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3085-9. doi: 10.1109/EMBC.2014.6944275.

Abstract

Rehabilitation of arm and hand function is crucial to increase functional independence of stroke subjects. Here, we investigate the technical feasibility of an integrated training system combining robotics and functional electrical stimulation (FES) to support reach and grasp during functional manipulation of objects. To support grasp and release, FES controlled the thumb and fingers using Model Predictive Control (MPC), while a novel 3D robotic manipulator provided reach support. The system's performance was assessed in both stroke and blindfolded healthy subjects, where the subject's passive arm and hand made functional reach, grasp, move and release movements while manipulating objects. The success rate of complete grasp, move and release tasks with different objects ranged from 33% to 87% in healthy subjects. In severe chronic stroke subjects especially the hand opening had a low success rate (<25%) and no complete movements could be made. We demonstrated that our developed integrated training system can move the passive arm and hand for functional pick and place movements. In the current setup, the positioning accuracy of the robot with respect to the object position was critical for the overall performance. The use of a higher virtual stiffness and including feedback of object position in the robot control would likely improve the relative position accuracy. The system has potential for post-stroke rehabilitation, where support could be reduced based on patient performance which is needed to aid motor relearning of reach, grasp and release.

摘要

恢复手臂和手部功能对于提高中风患者的功能独立性至关重要。在此,我们研究了一种结合机器人技术和功能性电刺激(FES)的综合训练系统在物体功能操作过程中支持伸展和抓握的技术可行性。为了支持抓握和松开,FES使用模型预测控制(MPC)来控制拇指和手指,同时一种新型3D机器人操纵器提供伸展支持。在中风患者和蒙眼的健康受试者中评估了该系统的性能,受试者的被动手臂和手部在操纵物体时进行功能性伸展、抓握、移动和松开动作。在健康受试者中,使用不同物体完成抓握、移动和松开任务的成功率在33%至87%之间。在严重的慢性中风患者中,尤其是手部张开的成功率较低(<25%),无法完成完整动作。我们证明了我们开发的综合训练系统可以移动被动手臂和手部进行功能性拾取和放置动作。在当前设置中,机器人相对于物体位置的定位精度对整体性能至关重要。使用更高的虚拟刚度并在机器人控制中纳入物体位置反馈可能会提高相对位置精度。该系统具有中风后康复的潜力,在康复过程中可以根据患者的表现减少支持,这有助于运动重新学习伸展、抓握和松开动作。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验