Sai Kiran M P R, Rajalakshmi P, Acharyya Amit
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4151-4. doi: 10.1109/EMBC.2014.6944538.
In hyperconnectivity scenario, managing the amount of data acquired from sensors in the Body Area Networks (BANs) is one of the major issues. In this paper we propose an on-chip context predictor based sparse sensing technology with smart transmission architecture which makes use of confidence interval calculation from the features that present in the data, thereby achieving statistical guarantee. The proposed architecture uses intelligent sparse sensing, which eradicates the collection of redundant data, thereby reducing the amount of data generated. For the performance analysis, we considered ECG data acquisition and transmission system. The proposed architecture when applied on the data collected from 10 patients reduces the duty cycle of the sensing unit to 27.99%, by achieving an energy saving of 72% and the mean deviation of sampled data from the original data is 2%.
在超连接场景中,管理从人体区域网络(BANs)中的传感器获取的数据量是主要问题之一。在本文中,我们提出了一种基于片上上下文预测器的稀疏传感技术,该技术具有智能传输架构,利用数据中存在的特征进行置信区间计算,从而实现统计保证。所提出的架构使用智能稀疏传感,消除了冗余数据的收集,从而减少了生成的数据量。为了进行性能分析,我们考虑了心电图数据采集和传输系统。将所提出的架构应用于从10名患者收集的数据时,传感单元的占空比降低到27.99%,实现了72%的节能,并且采样数据与原始数据的平均偏差为2%。