Suppr超能文献

用于物联网支持的远程健康监测应用的基于上下文预测器的稀疏传感技术和智能传输架构。

Context predictor based sparse sensing technique and smart transmission architecture for IoT enabled remote health monitoring applications.

作者信息

Sai Kiran M P R, Rajalakshmi P, Acharyya Amit

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4151-4. doi: 10.1109/EMBC.2014.6944538.

Abstract

In hyperconnectivity scenario, managing the amount of data acquired from sensors in the Body Area Networks (BANs) is one of the major issues. In this paper we propose an on-chip context predictor based sparse sensing technology with smart transmission architecture which makes use of confidence interval calculation from the features that present in the data, thereby achieving statistical guarantee. The proposed architecture uses intelligent sparse sensing, which eradicates the collection of redundant data, thereby reducing the amount of data generated. For the performance analysis, we considered ECG data acquisition and transmission system. The proposed architecture when applied on the data collected from 10 patients reduces the duty cycle of the sensing unit to 27.99%, by achieving an energy saving of 72% and the mean deviation of sampled data from the original data is 2%.

摘要

在超连接场景中,管理从人体区域网络(BANs)中的传感器获取的数据量是主要问题之一。在本文中,我们提出了一种基于片上上下文预测器的稀疏传感技术,该技术具有智能传输架构,利用数据中存在的特征进行置信区间计算,从而实现统计保证。所提出的架构使用智能稀疏传感,消除了冗余数据的收集,从而减少了生成的数据量。为了进行性能分析,我们考虑了心电图数据采集和传输系统。将所提出的架构应用于从10名患者收集的数据时,传感单元的占空比降低到27.99%,实现了72%的节能,并且采样数据与原始数据的平均偏差为2%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验