Suppr超能文献

基于肌电图的语音识别中深度神经网络的模式学习

Pattern learning with deep neural networks in EMG-based speech recognition.

作者信息

Wand Michael, Schultz Tanja

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4200-3. doi: 10.1109/EMBC.2014.6944550.

Abstract

We report on classification of phones and phonetic features from facial electromyographic (EMG) data, within the context of our EMG-based Silent Speech interface. In this paper we show that a Deep Neural Network can be used to perform this classification task, yielding a significant improvement over conventional Gaussian Mixture models. Our central contribution is the visualization of patterns which are learned by the neural network. With increasing network depth, these patterns represent more and more intricate electromyographic activity.

摘要

在基于肌电图(EMG)的无声语音接口背景下,我们报告了从面部肌电图数据中对语音单元和语音特征进行分类的情况。在本文中,我们表明深度神经网络可用于执行此分类任务,相较于传统的高斯混合模型有显著改进。我们的核心贡献在于对神经网络所学习到的模式进行可视化。随着网络深度的增加,这些模式代表了越来越复杂的肌电活动。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验