Fakhfakh H E, Llort-Pujol G, Hamitouche C, Stindel E
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5575-8. doi: 10.1109/EMBC.2014.6944890.
The Minimally Invasive Procedures (MIP) in orthopedics have grown rapidly worldwide, as clinical results indicate that patients who undergo MIP typically experience minimized blood loss, smaller incision and shorter hospital stays. For most MIP, a preoperative 3D model of the patient anatomy is usually generated in order to plan the surgery. The challenge in MIP consists in finding the correspondence between the preoperative model and the actual position of the patient in the operating room, also known as image-to-patient registration. This paper proposes a real-time solution based on ultrasound (US) images: the patient anatomy is scanned by an US probe. Then, the segmentation and the extraction of bone contours from US images result in a 3D point cloud. The Poisson surface reconstruction method provides a 3D surface from 2D US data which will be registered with the preoperative model (CT volume) using the principal axes of inertia and the Iterative Closest Point robust (ICPr) algorithm. We present quantitative and qualitative results on both phantom and clinical data and show a mean registration accuracy of 0.66 mm for clinical radius scan. The promising registration results show the possible use of the proposed registration algorithm in clinical procedures.
骨科的微创手术(MIP)在全球范围内发展迅速,因为临床结果表明,接受微创手术的患者通常失血最少、切口更小且住院时间更短。对于大多数微创手术而言,通常会生成患者解剖结构的术前三维模型以规划手术。微创手术的挑战在于找到术前模型与患者在手术室中的实际位置之间的对应关系,这也被称为图像与患者配准。本文提出了一种基于超声(US)图像的实时解决方案:用超声探头扫描患者的解剖结构。然后,从超声图像中分割并提取骨轮廓,得到一个三维点云。泊松曲面重建方法从二维超声数据生成一个三维曲面,该曲面将使用惯性主轴和迭代最近点鲁棒(ICPr)算法与术前模型(CT体积)进行配准。我们展示了针对体模和临床数据的定量和定性结果,并表明临床桡骨扫描的平均配准精度为0.66毫米。这些有前景的配准结果表明所提出的配准算法可能应用于临床手术中。