School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.
Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, China.
Int J Comput Assist Radiol Surg. 2019 Aug;14(8):1285-1294. doi: 10.1007/s11548-019-01974-6. Epub 2019 Apr 23.
UNLABELLED: Purpose Video see-through augmented reality (VST-AR) navigation for laparoscopic partial nephrectomy (LPN) can enhance intraoperative perception of surgeons by visualizing surgical targets and critical structures of the kidney tissue. Image registration is the main challenge in the procedure. Existing registration methods in laparoscopic navigation systems suffer from limitations such as manual alignment, invasive external marker fixation, relying on external tracking devices with bulky tracking sensors and lack of deformation compensation. To address these issues, we present a markerless automatic deformable registration framework for LPN VST-AR navigation. METHOD: Dense stereo matching and 3D reconstruction, automatic segmentation and surface stitching are combined to obtain a larger dense intraoperative point cloud of the renal surface. A coarse-to-fine deformable registration is performed to achieve a precise automatic registration between the intraoperative point cloud and the preoperative model using the iterative closest point algorithm followed by the coherent point drift algorithm. Kidney phantom experiments and in vivo experiments were performed to evaluate the accuracy and effectiveness of our approach. RESULTS: The average segmentation accuracy rate of the automatic segmentation was 94.9%. The mean target registration error of the phantom experiments was found to be 1.28 ± 0.68 mm (root mean square error). In vivo experiments showed that tumor location was identified successfully by superimposing the tumor model on the laparoscopic view. CONCLUSION: Experimental results have demonstrated that the proposed framework could accurately overlay comprehensive preoperative models on deformable soft organs automatically in a manner of VST-AR without using extra intraoperative imaging modalities and external tracking devices, as well as its potential clinical use.
未加标签:目的 视频透视增强现实 (VST-AR) 导航腹腔镜部分肾切除术 (LPN) 可以通过可视化手术目标和肾脏组织的关键结构来增强外科医生的术中感知。图像配准是该手术的主要挑战。现有的腹腔镜导航系统中的配准方法存在手动对准、外部标记物固定侵入性、依赖具有庞大跟踪传感器的外部跟踪设备以及缺乏变形补偿等局限性。为了解决这些问题,我们提出了一种用于 LPN VST-AR 导航的无标记自动可变形配准框架。 方法:密集立体匹配和 3D 重建、自动分割和表面拼接相结合,以获得更大的肾脏表面术中密集点云。使用迭代最近点算法和相干点漂移算法进行粗到精的可变形配准,以实现术中点云和术前模型之间的精确自动配准。进行了肾脏模型实验和体内实验,以评估我们方法的准确性和有效性。 结果:自动分割的平均分割准确率为 94.9%。模型实验的平均目标配准误差为 1.28±0.68mm(均方根误差)。体内实验表明,通过将肿瘤模型叠加到腹腔镜视图上,可以成功识别肿瘤位置。 结论:实验结果表明,所提出的框架可以在不使用额外的术中成像方式和外部跟踪设备的情况下,以 VST-AR 的方式自动准确地将全面的术前模型叠加到可变形的软组织上,具有潜在的临床应用价值。
Int J Comput Assist Radiol Surg. 2019-4-23
Int J Comput Assist Radiol Surg. 2020-5-2
Int J Comput Assist Radiol Surg. 2019-3-1
Int J Comput Assist Radiol Surg. 2018-5-26
Comput Med Imaging Graph. 2015-3
Int J Oral Maxillofac Implants. 2018
Int J Comput Assist Radiol Surg. 2017-8-5
Int J Comput Assist Radiol Surg. 2025-7-17
J Med Imaging (Bellingham). 2024-11
Int J Comput Assist Radiol Surg. 2025-4
Proc SPIE Int Soc Opt Eng. 2023-2
Sensors (Basel). 2023-12-16
Med Image Anal. 2017-1-24
Int J Comput Assist Radiol Surg. 2016-6
Langenbecks Arch Surg. 2015-4
Med Image Comput Comput Assist Interv. 2014
Med Image Comput Comput Assist Interv. 2013
J Gastrointest Surg. 2013-8-14