Suppr超能文献

一种用于任务相关和静息态功能磁共振成像数据分析的统一机器学习方法。

A unified machine learning method for task-related and resting state fMRI data analysis.

作者信息

Song Xiaomu, Chen Nan-kuei

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6426-9. doi: 10.1109/EMBC.2014.6945099.

Abstract

Functional magnetic resonance imaging (fMRI) aims to localize task-related brain activation or resting-state functional connectivity. Most existing fMRI data analysis techniques rely on fixed thresholds to identify active voxels under a task condition or functionally connected voxels in the resting state. Due to fMRI non-stationarity, a fixed threshold cannot adapt to intra- and inter-subject variation and provide a reliable mapping of brain function. In this work, a machine learning method is proposed for a unified analysis of both task-related and resting state fMRI data. Specifically, the mapping of brain function in a task condition or resting state is formulated as an outlier detection process. Support vector machines are used to provide an initial mapping and refine mapping results. The method does not require a fixed threshold for the final decision, and can adapt to fMRI non-stationarity. The proposed method was evaluated using experimental data acquired from multiple human subjects. The results indicate that the proposed method can provide reliable mapping of brain function, and is applicable to various quantitative fMRI studies.

摘要

功能磁共振成像(fMRI)旨在定位与任务相关的大脑激活或静息状态功能连接。大多数现有的fMRI数据分析技术依赖于固定阈值来识别任务条件下的活跃体素或静息状态下功能连接的体素。由于fMRI的非平稳性,固定阈值无法适应个体内和个体间的变化,也无法提供可靠的脑功能映射。在这项工作中,提出了一种机器学习方法,用于对与任务相关和静息状态的fMRI数据进行统一分析。具体而言,将任务条件或静息状态下的脑功能映射表述为一个异常值检测过程。支持向量机用于提供初始映射并细化映射结果。该方法在最终决策时不需要固定阈值,并且能够适应fMRI的非平稳性。使用从多个人类受试者获取的实验数据对所提出的方法进行了评估。结果表明,所提出的方法能够提供可靠的脑功能映射,并且适用于各种定量fMRI研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验