Suppr超能文献

用于任务态和静息态功能磁共振成像的空间正则化机器学习

Spatially regularized machine learning for task and resting-state fMRI.

作者信息

Song Xiaomu, Panych Lawrence P, Chen Nan-kuei

机构信息

Department of Electrical Engineering, School of Engineering, Widener University, Kirkbride Hall, Room 369, One University Place, Chester, PA 19013, United States.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.

出版信息

J Neurosci Methods. 2016 Jan 15;257:214-28. doi: 10.1016/j.jneumeth.2015.10.001. Epub 2015 Oct 16.

Abstract

BACKGROUND

Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades.

NEW METHOD

A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space.

RESULTS

The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level.

COMPARISON WITH EXISTING METHODS

A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level.

CONCLUSIONS

The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies.

摘要

背景

在任务态和静息态下跨会话和/或受试者可靠地绘制脑功能图,一直是定量功能磁共振成像(fMRI)研究面临的一项重大挑战,尽管在过去几十年中已对此进行了深入研究。

新方法

开发了一种空间正则化支持向量机(SVM)技术,用于在任务态和静息态下进行可靠的脑图谱绘制。与大多数现有的基于SVM的脑图谱技术不同,后者实现对特定脑功能状态或疾病的监督分类,而本文提出的方法对一般脑功能图谱进行半监督分类,将fMRI的空间相关性整合到SVM学习中。该方法能够适应由fMRI非平稳性引起的个体内和个体间差异,并在特征空间中识别激活与未激活体素之间,或功能连接与未连接体素之间的真实边界。

结果

在个体和群体水平上使用合成数据和实验数据对该方法进行了评估。从多个特征对空间正则化SVM学习的贡献方面进行了评估。在个体受试者和群体水平上均获得了任务态和静息态下可靠的图谱绘制结果。

与现有方法的比较

与独立成分分析、一般线性模型和相关分析方法进行了比较研究。实验结果表明,本文提出的方法在个体和群体水平上能够提供更好的或相当的图谱绘制性能。

结论

本文提出的方法能够在任务态和静息态下提供准确可靠的脑功能图谱,适用于各种定量fMRI研究。

相似文献

本文引用的文献

2
Voxel-level functional connectivity using spatial regularization.基于空间正则化的体素水平功能连接度
Neuroimage. 2012 Nov 15;63(3):1099-106. doi: 10.1016/j.neuroimage.2012.07.046. Epub 2012 Jul 28.
8
Behavioral interpretations of intrinsic connectivity networks.内在连接网络的行为解释。
J Cogn Neurosci. 2011 Dec;23(12):4022-37. doi: 10.1162/jocn_a_00077. Epub 2011 Jun 14.
9
Distinct resting-state brain activities in heroin-dependent individuals.海洛因成瘾者静息态大脑活动的差异。
Brain Res. 2011 Jul 21;1402:46-53. doi: 10.1016/j.brainres.2011.05.054. Epub 2011 May 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验