Suppr超能文献

PET/MR一体机的运动校正策略

Motion correction strategies for integrated PET/MR.

作者信息

Fürst Sebastian, Grimm Robert, Hong Inki, Souvatzoglou Michael, Casey Michael E, Schwaiger Markus, Nekolla Stephan G, Ziegler Sibylle I

机构信息

Department of Nuclear Medicine, Technische Universität München, Munich, Germany Graduate School of Information Science in Health (GSISH), Technische Universität München, Munich, Germany

Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany Siemens Healthcare MR, Erlangen, Germany; and.

出版信息

J Nucl Med. 2015 Feb;56(2):261-9. doi: 10.2967/jnumed.114.146787. Epub 2015 Jan 8.

Abstract

UNLABELLED

Integrated whole-body PET/MR facilitates the implementation of a broad variety of respiratory motion correction strategies, taking advantage of the strengths of both modalities. The goal of this study was the quantitative evaluation with clinical data of different MR- and PET-data-based motion correction strategies for integrated PET/MR.

METHODS

The PET and MR data of 20 patients were simultaneously acquired for 10 min on an integrated PET/MR system after administration of (18)F-FDG or (68)Ga-DOTANOC. Respiratory traces recorded with a bellows were compared against MR self-gating signals and signals extracted from PET raw data with the sensitivity method, by applying principal component analysis (PCA) or Laplacian eigenmaps and by using a novel variation combining the former and either of the latter two. Gated sinograms and MR images were generated accordingly, followed by image registration to derive MR motion models. Corrected PET images were reconstructed by incorporating this information into the reconstruction. An optical flow algorithm was applied for PET-based motion correction. Gating and motion correction were evaluated by quantitative analysis of apparent tracer uptake, lesion volume, displacement, contrast, and signal-to-noise ratio.

RESULTS

The correlation between bellows- and MR-based signals was 0.63 ± 0.19, and that between MR and the sensitivity method was 0.52 ± 0.26. Depending on the PET raw-data compression, the average correlation between MR and PCA ranged from 0.25 ± 0.30 to 0.58 ± 0.33, and the range was 0.25 ± 0.30 to 0.42 ± 0.34 if Laplacian eigenmaps were applied. By combining the sensitivity method and PCA or Laplacian eigenmaps, the maximum average correlation to MR could be increased to 0.74 ± 0.21 and 0.70 ± 0.19, respectively. The selection of the best PET-based signal for each patient yielded an average correlation of 0.80 ± 0.13 with MR. Using the best PET-based respiratory signal for gating, mean tracer uptake increased by 17 ± 19% for gating, 13 ± 10% for MR-based motion correction, and 18 ± 15% for PET-based motion correction, compared with the static images. Lesion volumes were 76 ± 31%, 83 ± 18%, and 74 ± 22% of the sizes in the static images for gating, MR-based motion correction, and PET-based motion correction, respectively.

CONCLUSION

Respiratory traces extracted from MR and PET data are comparable to those based on external sensors. The proposed PET-driven gating method improved respiratory signals and overall stability. Consistent results from MR- and PET-based correction methods enable more flexible PET/MR scan protocols while achieving higher PET image quality.

摘要

未标注

一体化全身PET/MR利用两种模态的优势,便于实施多种呼吸运动校正策略。本研究的目的是利用临床数据对一体化PET/MR中基于不同MR和PET数据的运动校正策略进行定量评估。

方法

在给予(18)F-FDG或(68)Ga-DOTANOC后,在一体化PET/MR系统上对20例患者的PET和MR数据同时采集10分钟。将用波纹管记录的呼吸轨迹与MR自门控信号以及用灵敏度方法、应用主成分分析(PCA)或拉普拉斯特征映射从PET原始数据中提取的信号进行比较,并使用结合前一种方法与后两种方法之一的新变体。据此生成门控正弦图和MR图像,然后进行图像配准以导出MR运动模型。通过将此信息纳入重建来重建校正后的PET图像。应用光流算法进行基于PET的运动校正。通过对表观示踪剂摄取、病变体积、位移、对比度和信噪比的定量分析来评估门控和运动校正。

结果

基于波纹管和MR的信号之间的相关性为0.63±0.19,MR与灵敏度方法之间的相关性为0.52±0.26。根据PET原始数据压缩情况,MR与PCA之间的平均相关性范围为0.25±0.30至0.58±0.33,若应用拉普拉斯特征映射,范围为0.25±0.30至0.42±0.34。通过将灵敏度方法与PCA或拉普拉斯特征映射相结合,与MR的最大平均相关性可分别提高到0.74±0.21和0.70±0.19。为每位患者选择最佳的基于PET的信号,与MR的平均相关性为0.80±0.13。与静态图像相比,使用最佳的基于PET的呼吸信号进行门控时,平均示踪剂摄取在门控时增加17±19%,基于MR的运动校正时增加13±10%,基于PET的运动校正时增加18±15%。对于门控、基于MR的运动校正和基于PET的运动校正,病变体积分别为静态图像中大小的76±31%、83±18%和74±22%。

结论

从MR和PET数据中提取的呼吸轨迹与基于外部传感器的轨迹相当。所提出的基于PET的门控方法改善了呼吸信号和整体稳定性。基于MR和PET的校正方法的一致结果能够实现更灵活的PET/MR扫描方案,同时获得更高的PET图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验