Division of Biochemistry and Biotechnology, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 5, FIN-00014, Helsinki, Finland.
Neuroscience Center, University of Helsinki, Viikinkaari 4, FIN-00014, Helsinki, Finland.
Biol Open. 2015 Jan 8;4(2):125-36. doi: 10.1242/bio.201410439.
ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)-dependent pathway, which promotes spine maturation and synapse formation. Here, we report a novel, ICAM-5-dependent mechanism underlying spine maturation by regulating the dynamics and synaptic distribution of α-actinin. We found that GluN1 and ICAM-5 partially compete for the binding to α-actinin; deletion of the cytoplasmic tail of ICAM-5 or ablation of the gene resulted in increased association of GluN1 with α-actinin, whereas internalization of ICAM-5 peptide perturbed the GluN1/α-actinin interaction. NMDA treatment decreased α-actinin binding to ICAM-5, and increased the binding to GluN1. Proper synaptic distribution of α-actinin requires the ICAM-5 cytoplasmic domain, without which α-actinin tended to accumulate in filopodia, leading to F-actin reorganization. The results indicate that ICAM-5 retards spine maturation by preventing reorganization of the actin cytoskeleton, but NMDA receptor activation is sufficient to relieve the brake and promote the maturation of spines.
细胞间黏附分子 5(ICAM-5)是树突棘成熟的负调控因子,有助于形成丝状伪足。其缺失会导致记忆功能改善,但机制仍知之甚少。NMDA 受体的激活通过基质金属蛋白酶(MMP)依赖性途径诱导 ICAM-5 细胞外结构域的切割,从而促进棘突成熟和突触形成。在这里,我们报告了一种新的、依赖于 ICAM-5 的机制,通过调节 α-辅肌动蛋白的动力学和突触分布来促进棘突成熟。我们发现 GluN1 和 ICAM-5 部分竞争与 α-辅肌动蛋白的结合;ICAM-5 细胞质尾巴的缺失或基因的缺失导致 GluN1 与 α-辅肌动蛋白的结合增加,而 ICAM-5 肽的内化则扰乱了 GluN1/α-辅肌动蛋白的相互作用。NMDA 处理会降低 α-辅肌动蛋白与 ICAM-5 的结合,增加与 GluN1 的结合。α-辅肌动蛋白的适当突触分布需要 ICAM-5 的细胞质结构域,没有该结构域,α-辅肌动蛋白往往会在丝状伪足中积累,导致 F-肌动蛋白重组。结果表明,ICAM-5 通过阻止肌动蛋白细胞骨架的重组来阻碍棘突成熟,但 NMDA 受体的激活足以解除制动并促进棘突的成熟。