Suppr超能文献

控制冬眠哺乳动物心脏和骨骼肌不同适应性的基因表达变化。

Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.

作者信息

Vermillion Katie L, Anderson Kyle J, Hampton Marshall, Andrews Matthew T

机构信息

Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and.

Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, Minnesota.

出版信息

Physiol Genomics. 2015 Mar;47(3):58-74. doi: 10.1152/physiolgenomics.00108.2014. Epub 2015 Jan 8.

Abstract

Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation.

摘要

在整个冬眠季节,三线地松鼠(Ictidomys tridecemlineatus)的心率、新陈代谢、氧气消耗和体温会经历极端波动,同时伴有长时间禁食和不活动。这些情况对心脏和骨骼肌提出了不同的功能需求,心脏在整个冬眠期间维持收缩功能,而骨骼肌在很大程度上保持不活动状态。在如此多变的条件下用于维持这些收缩器官的适应性变化,可作为研究包括心力衰竭和废用性萎缩在内的多种医学相关病症的天然模型。为了更好地理解两种不同的肌肉组织在冬眠的极端波动过程中是如何维持功能的,我们对cDNA进行了Illumina HiSeq 2000测序,以比较心脏和骨骼肌在全年周期中的转录组。该分析分别在心脏和骨骼肌中鉴定出1076个和1466个差异表达基因。在心脏和骨骼肌中,我们都发现了一种独特的耐寒机制,该机制利用过氧化物酶体代谢来利用升高的不饱和储存脂肪水平。骨骼肌转录组还显示,颤抖时燃料利用改变和氧气需求增加所需的氧化能力早期增加。胎儿基因表达谱的表达用于维持心脏组织,要么通过增加心肌细胞大小,要么通过驻留心肌细胞的增殖,而骨骼肌功能和质量则通过参与蛋白质周转的途径的转录调控得到保护。这项研究深入了解了两种功能不同的肌肉在哺乳动物冬眠的极端条件下是如何维持功能的。

相似文献

1
Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.
Physiol Genomics. 2015 Mar;47(3):58-74. doi: 10.1152/physiolgenomics.00108.2014. Epub 2015 Jan 8.
2
Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal.
Physiol Genomics. 2005 Oct 17;23(2):227-34. doi: 10.1152/physiolgenomics.00076.2005. Epub 2005 Aug 2.
3
Proteogenomic Analysis of a Hibernating Mammal Indicates Contribution of Skeletal Muscle Physiology to the Hibernation Phenotype.
J Proteome Res. 2016 Apr 1;15(4):1253-61. doi: 10.1021/acs.jproteome.5b01138. Epub 2016 Mar 3.
4
Differential expression of miRNAs with metabolic implications in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus.
Mol Cell Biochem. 2014 Sep;394(1-2):291-8. doi: 10.1007/s11010-014-2105-4. Epub 2014 May 30.
6
Comparative functional genomics of adaptation to muscular disuse in hibernating mammals.
Mol Ecol. 2014 Nov;23(22):5524-37. doi: 10.1111/mec.12963. Epub 2014 Nov 3.
8
Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal.
PLoS One. 2011;6(10):e27021. doi: 10.1371/journal.pone.0027021. Epub 2011 Oct 28.
9
Seasonal and regional differences in gene expression in the brain of a hibernating mammal.
PLoS One. 2013;8(3):e58427. doi: 10.1371/journal.pone.0058427. Epub 2013 Mar 20.
10
Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel.
Physiol Genomics. 2016 Jun;48(6):388-96. doi: 10.1152/physiolgenomics.00005.2016. Epub 2016 Apr 15.

引用本文的文献

2
Transcriptome Remodeling and Adaptive Preservation of Muscle Protein Content in Hibernating Black Bears.
Ecol Evol. 2025 Jun 26;15(7):e71669. doi: 10.1002/ece3.71669. eCollection 2025 Jul.
3
Extensive longevity and DNA virus-driven adaptation in nearctic bats.
bioRxiv. 2024 Nov 27:2024.10.10.617725. doi: 10.1101/2024.10.10.617725.
8
Rats lacking Ucp1 present a novel translational tool for the investigation of thermogenic adaptation during cold challenge.
Acta Physiol (Oxf). 2023 May;238(1):e13935. doi: 10.1111/apha.13935. Epub 2023 Feb 7.
10
Big brown bats experience slower epigenetic ageing during hibernation.
Proc Biol Sci. 2022 Aug 10;289(1980):20220635. doi: 10.1098/rspb.2022.0635.

本文引用的文献

1
Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase.
J Biol Chem. 2014 Jul 11;289(28):19726-36. doi: 10.1074/jbc.M114.576579. Epub 2014 Jun 2.
2
Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation.
PLoS One. 2013 Dec 30;8(12):e85157. doi: 10.1371/journal.pone.0085157. eCollection 2013.
5
Seasonal and regional differences in gene expression in the brain of a hibernating mammal.
PLoS One. 2013;8(3):e58427. doi: 10.1371/journal.pone.0058427. Epub 2013 Mar 20.
6
Mechanisms regulating skeletal muscle growth and atrophy.
FEBS J. 2013 Sep;280(17):4294-314. doi: 10.1111/febs.12253. Epub 2013 Apr 17.
7
Hibernating squirrel muscle activates the endurance exercise pathway despite prolonged immobilization.
Exp Neurol. 2013 Sep;247:392-401. doi: 10.1016/j.expneurol.2013.01.005. Epub 2013 Jan 16.
8
Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential.
J Physiol. 2013 Mar 15;591(6):1409-32. doi: 10.1113/jphysiol.2012.235382. Epub 2012 Dec 3.
10
Myocardin regulates BMP10 expression and is required for heart development.
J Clin Invest. 2012 Oct;122(10):3678-91. doi: 10.1172/JCI63635. Epub 2012 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验