Suppr超能文献

肌肽和高肌肽合成中的代谢物校对:PM20D2作为β-丙氨酰赖氨酸二肽酶的分子鉴定。

Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase.

作者信息

Veiga-da-Cunha Maria, Chevalier Nathalie, Stroobant Vincent, Vertommen Didier, Van Schaftingen Emile

机构信息

From the Welbio and the Laboratory of Physiological Chemistry,

From the Welbio and the Laboratory of Physiological Chemistry.

出版信息

J Biol Chem. 2014 Jul 11;289(28):19726-36. doi: 10.1074/jbc.M114.576579. Epub 2014 Jun 2.

Abstract

Carnosine synthase is the ATP-dependent ligase responsible for carnosine (β-alanyl-histidine) and homocarnosine (γ-aminobutyryl-histidine) synthesis in skeletal muscle and brain, respectively. This enzyme uses, also at substantial rates, lysine, ornithine, and arginine instead of histidine, yet the resulting dipeptides are virtually absent from muscle or brain, suggesting that they are removed by a "metabolite repair" enzyme. Using a radiolabeled substrate, we found that rat skeletal muscle, heart, and brain contained a cytosolic β-alanyl-lysine dipeptidase activity. This enzyme, which has the characteristics of a metalloenzyme, was purified ≈ 200-fold from rat skeletal muscle. Mass spectrometry analysis of the fractions obtained at different purification stages indicated parallel enrichment of PM20D2, a peptidase of unknown function belonging to the metallopeptidase 20 family. Western blotting showed coelution of PM20D2 with β-alanyl-lysine dipeptidase activity. Recombinant mouse PM20D2 hydrolyzed β-alanyl-lysine, β-alanyl-ornithine, γ-aminobutyryl-lysine, and γ-aminobutyryl-ornithine as its best substrates. It also acted at lower rates on β-alanyl-arginine and γ-aminobutyryl-arginine but virtually not on carnosine or homocarnosine. Although acting preferentially on basic dipeptides derived from β-alanine or γ-aminobutyrate, PM20D2 also acted at lower rates on some "classic dipeptides" like α-alanyl-lysine and α-lysyl-lysine. The same activity profile was observed with human PM20D2, yet this enzyme was ∼ 100-200-fold less active on all substrates tested than the mouse enzyme. Cotransfection in HEK293T cells of mouse or human PM20D2 together with carnosine synthase prevented the accumulation of abnormal dipeptides (β-alanyl-lysine, β-alanyl-ornithine, γ-aminobutyryl-lysine), thus favoring the synthesis of carnosine and homocarnosine and confirming the metabolite repair role of PM20D2.

摘要

肌肽合成酶是一种依赖ATP的连接酶,分别负责在骨骼肌和大脑中合成肌肽(β-丙氨酰组氨酸)和高肌肽(γ-氨基丁酰组氨酸)。该酶也能以相当高的速率使用赖氨酸、鸟氨酸和精氨酸来替代组氨酸,然而在肌肉或大脑中几乎检测不到由此产生的二肽,这表明它们被一种“代谢物修复”酶清除了。使用放射性标记的底物,我们发现大鼠的骨骼肌、心脏和大脑中含有一种胞质β-丙氨酰赖氨酸二肽酶活性。这种具有金属酶特性的酶从大鼠骨骼肌中纯化了约200倍。对不同纯化阶段获得的组分进行质谱分析表明,PM20D2(一种功能未知的属于金属肽酶20家族的肽酶)平行富集。蛋白质免疫印迹显示PM20D2与β-丙氨酰赖氨酸二肽酶活性共洗脱。重组小鼠PM20D2水解β-丙氨酰赖氨酸、β-丙氨酰鸟氨酸、γ-氨基丁酰赖氨酸和γ-氨基丁酰鸟氨酸的效率最高。它对β-丙氨酰精氨酸和γ-氨基丁酰精氨酸的作用速率较低,但对肌肽或高肌肽几乎没有作用。尽管PM20D2优先作用于源自β-丙氨酸或γ-氨基丁酸的碱性二肽,但它对一些“经典二肽”如α-丙氨酰赖氨酸和α-赖氨酰赖氨酸的作用速率也较低。人PM20D2也表现出相同的活性特征,但该酶对所有测试底物的活性比小鼠酶低约100 -倍。在HEK293T细胞中,小鼠或人PM20D2与肌肽合成酶共转染可防止异常二肽(β-丙氨酰赖氨酸、β-丙氨酰鸟氨酸、γ-氨基丁酰赖氨酸)的积累,从而有利于肌肽和高肌肽的合成,并证实了PM20D2的代谢物修复作用。

相似文献

1
Metabolite proofreading in carnosine and homocarnosine synthesis: molecular identification of PM20D2 as β-alanyl-lysine dipeptidase.
J Biol Chem. 2014 Jul 11;289(28):19726-36. doi: 10.1074/jbc.M114.576579. Epub 2014 Jun 2.
2
Molecular identification of carnosine synthase as ATP-grasp domain-containing protein 1 (ATPGD1).
J Biol Chem. 2010 Mar 26;285(13):9346-9356. doi: 10.1074/jbc.M109.095505. Epub 2010 Jan 22.
3
Carnosinases, their substrates and diseases.
Molecules. 2014 Feb 21;19(2):2299-329. doi: 10.3390/molecules19022299.
5
Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase.
J Biol Chem. 2003 Feb 21;278(8):6521-31. doi: 10.1074/jbc.M209764200. Epub 2002 Dec 6.
6
Dietary GABA induces endogenous synthesis of a novel imidazole peptide homocarnosine in mouse skeletal muscles.
Amino Acids. 2020 May;52(5):743-753. doi: 10.1007/s00726-020-02848-x. Epub 2020 May 2.
7
The zinc form of carnosine dipeptidase 2 (CN2) has dipeptidase activity but its substrate specificity is different from that of the manganese form.
Biochem Biophys Res Commun. 2017 Dec 16;494(3-4):484-490. doi: 10.1016/j.bbrc.2017.10.100. Epub 2017 Oct 19.
8
Gene expression of carnosine-related enzymes and transporters in skeletal muscle.
Eur J Appl Physiol. 2013 May;113(5):1169-79. doi: 10.1007/s00421-012-2540-4. Epub 2012 Nov 4.
10
Biosynthesis of Carnosine and Related Dipeptides in Vertebrates.
Curr Protein Pept Sci. 2018;19(8):771-789. doi: 10.2174/1389203719666180226155657.

引用本文的文献

1
Neural Spectral Prediction for Structure Elucidation with Tandem Mass Spectrometry.
bioRxiv. 2025 Jun 1:2025.05.28.656653. doi: 10.1101/2025.05.28.656653.
4
Effects of Cyclic High Ambient Temperature on Muscle Imidazole Dipeptide Content in Broiler Chickens.
J Poult Sci. 2024 Feb 1;61:2024004. doi: 10.2141/jpsa.2024004. eCollection 2024.
5
Combining bioinformatics analysis and experiments to explore CARNS1 as a prognostic biomarker for breast cancer.
Mol Genet Genomic Med. 2021 Feb;9(2):e1586. doi: 10.1002/mgg3.1586. Epub 2021 Feb 3.
6
Strategy for the Biosynthesis of Short Oligopeptides: Green and Sustainable Chemistry.
Biomolecules. 2019 Nov 13;9(11):733. doi: 10.3390/biom9110733.
7
Natural human genetic variation determines basal and inducible expression of , an obesity-associated gene.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23232-23242. doi: 10.1073/pnas.1913199116. Epub 2019 Oct 28.
8
CNDP1 knockout in zebrafish alters the amino acid metabolism, restrains weight gain, but does not protect from diabetic complications.
Cell Mol Life Sci. 2019 Nov;76(22):4551-4568. doi: 10.1007/s00018-019-03127-z. Epub 2019 May 9.
9
Failure to eliminate a phosphorylated glucose analog leads to neutropenia in patients with G6PT and G6PC3 deficiency.
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1241-1250. doi: 10.1073/pnas.1816143116. Epub 2019 Jan 9.

本文引用的文献

1
Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.
mBio. 2013 Dec 10;4(6):e00912-13. doi: 10.1128/mBio.00912-13.
2
Physiology and pathophysiology of carnosine.
Physiol Rev. 2013 Oct;93(4):1803-45. doi: 10.1152/physrev.00039.2012.
3
Metabolite damage and its repair or pre-emption.
Nat Chem Biol. 2013 Feb;9(2):72-80. doi: 10.1038/nchembio.1141.
4
Metabolite proofreading, a neglected aspect of intermediary metabolism.
J Inherit Metab Dis. 2013 May;36(3):427-34. doi: 10.1007/s10545-012-9571-1. Epub 2013 Jan 8.
5
Progress in understanding 2-hydroxyglutaric acidurias.
J Inherit Metab Dis. 2012 Jul;35(4):571-87. doi: 10.1007/s10545-012-9462-5. Epub 2012 Mar 6.
7
Ethylmalonyl-CoA decarboxylase, a new enzyme involved in metabolite proofreading.
J Biol Chem. 2011 Dec 16;286(50):42992-3003. doi: 10.1074/jbc.M111.281527. Epub 2011 Oct 20.
8
Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.
J Biol Chem. 2011 Dec 2;286(48):41246-41252. doi: 10.1074/jbc.C111.310847. Epub 2011 Oct 12.
9
Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout.
Amino Acids. 2012 Jun;42(6):2461-72. doi: 10.1007/s00726-011-1054-4. Epub 2011 Aug 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验