Carniato S, Selles P, Andric L, Palaudoux J, Penent F, Žitnik M, Bučar K, Nakano M, Hikosaka Y, Ito K, Lablanquie P
Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, Sorbonne Universités, UPMC University of Paris 6, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05, France.
Jozef Stefan Institute, P.O. Box 3000, SI-1001 Ljubljana, Slovenia.
J Chem Phys. 2015 Jan 7;142(1):014308. doi: 10.1063/1.4904274.
The formalism developed in the companion Paper I is used here for the interpretation of spectra obtained recently on the nitrogen molecule. Double core-hole ionization K(-2) and core ionization-core excitation K(-2)V processes have been observed by coincidence electron spectroscopy after ionization by synchrotron radiation at different photon energies. Theoretical and experimental cross sections reported on an absolute scale are in satisfactory agreement. The evolution with photon energy of the relative contribution of shake-up and conjugate shake-up processes is discussed. The first main resonance in the K(-2)V spectrum is assigned to a K(-2)π(∗) state mainly populated by the 1s→ lowest unoccupied molecular orbital dipolar excitation, as it is in the K(-1)V NEXAFS (Near-Edge X-ray Absorption Fine Structure) signals. Closer to the K(-2) threshold Rydberg resonances have been also identified, and among them a K(-2)σ(∗) resonance characterized by a large amount of 2s/2p hybridization, and double K(-2)(2σ(∗)/1π/3σ)(-1)1π(∗2) shake-up states. These resonances correspond in NEXAFS spectra to, respectively, the well-known σ(∗) shape resonance and double excitation K(-1)(2σ(∗)/1π/3σ)(-1)1π(∗2) resonances, all being positioned above the threshold.
在配套论文I中发展的形式体系在此用于解释最近在氮分子上获得的光谱。通过同步辐射在不同光子能量下电离后,利用符合电子能谱观察到了双芯孔电离K(-2)和芯电离-芯激发K(-2)V过程。报道的绝对尺度上的理论和实验截面吻合良好。讨论了振激和共轭振激过程相对贡献随光子能量的变化。K(-2)V光谱中的第一个主要共振被归因于一个K(-2)π(∗)态,主要由1s→最低未占据分子轨道的偶极激发填充,就像在K(-1)V近边X射线吸收精细结构(NEXAFS)信号中一样。在更接近K(-2)阈值处也识别出了里德堡共振,其中一个K(-2)σ(∗)共振的特征是大量的2s/2p杂化,以及双K(-2)(2σ(∗)/1π/3σ)(-1)1π(∗2)振激态。这些共振在NEXAFS光谱中分别对应于著名的σ(∗)形状共振和双激发K(-1)(2σ(∗)/1π/3σ)(-1)1π(∗2)共振,它们都位于阈值之上。