Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia , via Barsanti 1, 73010 Arnesano, Lecce, Italy.
J Am Chem Soc. 2015 Feb 11;137(5):1875-86. doi: 10.1021/ja510739q. Epub 2015 Jan 27.
Colloidal quantum dots (QDs) stand among the most attractive light-harvesting materials to be exploited for solution-processed optoelectronic applications. To this aim, quantitative replacement of the bulky electrically insulating ligands at the QD surface coming from the synthetic procedure is mandatory. Here we present a conceptually novel approach to design light-harvesting nanomaterials demonstrating that QD surface modification with suitable short conjugated organic molecules permits us to drastically enhance light absorption of QDs, while preserving good long-term colloidal stability. Indeed, rational design of the pendant and anchoring moieties, which constitute the replacing ligand framework leads to a broadband increase of the optical absorbance larger than 300% for colloidal PbS QDs also at high energies (>3.1 eV), which could not be predicted by using formalisms derived from effective medium theory. We attribute such a drastic absorbance increase to ground-state ligand/QD orbital mixing, as inferred by density functional theory calculations; in addition, our findings suggest that the optical band gap reduction commonly observed for PbS QD solids treated with thiol-terminating ligands can be prevalently ascribed to 3p orbitals localized on anchoring sulfur atoms, which mix with the highest occupied states of the QDs. More broadly, we provide evidence that organic ligands and inorganic cores are inherently electronically coupled materials thus yielding peculiar chemical species (the colloidal QDs themselves), which display arising (opto)electronic properties that cannot be merely described as the sum of those of the ligand and core components.
胶体量子点 (QDs) 是最具吸引力的光收集材料之一,可用于制备溶液处理的光电应用。为此,必须定量替换合成过程中 QD 表面来自电绝缘配体的大块。在这里,我们提出了一种设计光收集纳米材料的新概念,证明了用合适的短共轭有机分子对 QD 表面进行修饰,可以显著增强 QD 的光吸收,同时保持良好的长期胶体稳定性。实际上,通过对构成取代配体框架的悬垂和锚固部分进行合理设计,可以使胶体 PbS QD 的光吸收在宽带范围内增加 300%以上,即使在高能 (>3.1 eV) 下也能增加,这不能通过使用源自有效介质理论的形式体系来预测。我们将这种吸收急剧增加归因于密度泛函理论计算推断的基态配体/QD 轨道混合;此外,我们的发现表明,用硫醇端接配体处理的 PbS QD 固体中观察到的光学带隙减小,主要归因于锚定硫原子上的 3p 轨道与 QD 的最高占据态混合。更广泛地说,我们提供了证据表明,有机配体和无机核是固有电子偶联材料,从而产生了特殊的化学物质(胶体 QD 本身),它们显示出新兴的(光电)电子特性,不能简单地描述为配体和核心组件特性的总和。