Kopylova Evguenia, Noé Laurent, Da Silva Corinne, Berthelot Jean-Frédéric, Alberti Adriana, Aury Jean-Marc, Touzet Hélène
LIFL, UMR CNRS 8022, Lille 1 University, Villeneuve d'Ascq, France,
Methods Mol Biol. 2015;1269:279-91. doi: 10.1007/978-1-4939-2291-8_17.
Metatranscriptomic data contributes another piece of the puzzle to understanding the phylogenetic structure and function of a community of organisms. High-quality total RNA is a bountiful mixture of ribosomal, transfer, messenger and other noncoding RNAs, where each family of RNA is vital to answering questions concerning the hidden microbial world. Software tools designed for deciphering metatranscriptomic data fall under two main categories: the first is to reassemble millions of short nucleotide fragments produced by high-throughput sequencing technologies into the original full-length transcriptomes for all organisms within a sample, and the second is to taxonomically classify the organisms and determine their individual functional roles within a community. Species identification is mainly established using the ribosomal RNA genes, whereas the behavior and functionality of a community is revealed by the messenger RNA of the expressed genes. Numerous chemical and computational methods exist to separate families of RNA prior to conducting further downstream analyses, primarily suitable for isolating mRNA or rRNA from a total RNA sample. In this chapter, we demonstrate a computational technique for filtering rRNA from total RNA using the software SortMeRNA. Additionally, we propose a post-processing pipeline using the latest software tools to conduct further studies on the filtered data, including the reconstruction of mRNA transcripts for functional analyses and phylogenetic classification of a community using the ribosomal RNA.
宏转录组数据为理解生物群落的系统发育结构和功能提供了另一块拼图。高质量的总RNA是核糖体RNA、转运RNA、信使RNA和其他非编码RNA的丰富混合物,其中每种RNA家族对于回答有关隐藏微生物世界的问题都至关重要。用于解读宏转录组数据的软件工具主要分为两类:第一类是将高通量测序技术产生的数百万个短核苷酸片段重新组装成样本中所有生物的原始全长转录组,第二类是对生物进行分类并确定它们在群落中的个体功能作用。物种鉴定主要通过核糖体RNA基因来进行,而群落的行为和功能则通过已表达基因的信使RNA来揭示。在进行进一步的下游分析之前,有许多化学和计算方法可用于分离RNA家族,这些方法主要适用于从总RNA样本中分离mRNA或rRNA。在本章中,我们展示了一种使用SortMeRNA软件从总RNA中过滤rRNA的计算技术。此外,我们提出了一种后处理流程,使用最新的软件工具对过滤后的数据进行进一步研究,包括重建mRNA转录本以进行功能分析,以及使用核糖体RNA对群落进行系统发育分类。