Suppr超能文献

心肌相关转录因子A调控祖细胞向米色脂肪细胞的转化。

Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes.

作者信息

McDonald Meghan E, Li Chendi, Bian Hejiao, Smith Barbara D, Layne Matthew D, Farmer Stephen R

机构信息

Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.

Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.

出版信息

Cell. 2015 Jan 15;160(1-2):105-18. doi: 10.1016/j.cell.2014.12.005. Epub 2015 Jan 8.

Abstract

Adipose tissue is an essential regulator of metabolic homeostasis. In contrast with white adipose tissue, which stores excess energy in the form of triglycerides, brown adipose tissue is thermogenic, dissipating energy as heat via the unique expression of the mitochondrial uncoupling protein UCP1. A subset of UCP1+ adipocytes develops within white adipose tissue in response to physiological stimuli; however, the developmental origin of these "brite" or "beige" adipocytes is unclear. Here, we report the identification of a BMP7-ROCK signaling axis regulating beige adipocyte formation via control of the G-actin-regulated transcriptional coactivator myocardin-related transcription factor A, MRTFA. White adipose tissue from MRTFA(-/-) mice contains more multilocular adipocytes and expresses enhanced levels of brown-selective proteins, including UCP1. MRTFA(-/-) mice also show improved metabolic profiles and protection from diet-induced obesity and insulin resistance. Our study hence unravels a central pathway driving the development of physiologically functional beige adipocytes.

摘要

脂肪组织是代谢稳态的重要调节者。与以甘油三酯形式储存多余能量的白色脂肪组织不同,棕色脂肪组织具有产热功能,通过线粒体解偶联蛋白UCP1的独特表达将能量以热量形式散发。一部分UCP1+脂肪细胞会在白色脂肪组织内响应生理刺激而形成;然而,这些“亮”或“米色”脂肪细胞的发育起源尚不清楚。在此,我们报告鉴定出一条BMP7-ROCK信号轴,该信号轴通过控制G-肌动蛋白调节的转录共激活因子心肌素相关转录因子A(MRTFA)来调节米色脂肪细胞的形成。来自MRTFA(-/-)小鼠的白色脂肪组织含有更多的多泡脂肪细胞,并表达更高水平的棕色特异性蛋白,包括UCP1。MRTFA(-/-)小鼠还表现出改善的代谢状况,并对饮食诱导的肥胖和胰岛素抵抗具有保护作用。因此,我们的研究揭示了一条驱动具有生理功能的米色脂肪细胞发育的核心途径。

相似文献

1
Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes.
Cell. 2015 Jan 15;160(1-2):105-18. doi: 10.1016/j.cell.2014.12.005. Epub 2015 Jan 8.
2
TGF-β receptor 1 regulates progenitors that promote browning of white fat.
Mol Metab. 2018 Oct;16:160-171. doi: 10.1016/j.molmet.2018.07.008. Epub 2018 Jul 27.
3
Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance.
Mol Metab. 2016 Sep 28;5(12):1149-1161. doi: 10.1016/j.molmet.2016.09.009. eCollection 2016 Dec.
4
BMP4 and BMP7 induce the white-to-brown transition of primary human adipose stem cells.
Am J Physiol Cell Physiol. 2014 Mar 1;306(5):C431-40. doi: 10.1152/ajpcell.00290.2013. Epub 2013 Nov 27.
6
Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice.
Am J Physiol Endocrinol Metab. 2016 Apr 15;310(8):E676-E687. doi: 10.1152/ajpendo.00028.2015. Epub 2016 Feb 16.
7
Brite/beige fat and UCP1 - is it thermogenesis?
Biochim Biophys Acta. 2014 Jul;1837(7):1075-82. doi: 10.1016/j.bbabio.2014.02.008. Epub 2014 Feb 14.
10
BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes.
Lipids. 2015 Feb;50(2):111-20. doi: 10.1007/s11745-014-3981-9. Epub 2014 Dec 23.

引用本文的文献

2
Endothelial cell alterations in capillaries of adipose tissue from patients affected by lipedema.
Obesity (Silver Spring). 2025 Apr;33(4):695-708. doi: 10.1002/oby.24244. Epub 2025 Mar 12.
3
Bone morphogenetic protein 7 derived from DPP4 cells in beige fat ameliorates age-associated metabolic dysfunction.
Life Med. 2023 Jul 4;2(4):lnad025. doi: 10.1093/lifemedi/lnad025. eCollection 2023 Aug.
4
Enhancing adipose tissue plasticity: progenitor cell roles in metabolic health.
Nat Rev Endocrinol. 2025 May;21(5):272-288. doi: 10.1038/s41574-024-01071-y. Epub 2025 Jan 6.
5
GRAF1 deficiency leads to defective brown adipose tissue differentiation and thermogenic response.
Sci Rep. 2024 Nov 20;14(1):28692. doi: 10.1038/s41598-024-79301-6.
6
Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes.
Adipocyte. 2024 Dec;13(1):2391511. doi: 10.1080/21623945.2024.2391511. Epub 2024 Aug 18.
8
Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming.
Elife. 2024 May 22;12:RP87756. doi: 10.7554/eLife.87756.
9
Challenges and opportunities in obesity: the role of adipocytes during tissue fibrosis.
Front Endocrinol (Lausanne). 2024 Apr 15;15:1365156. doi: 10.3389/fendo.2024.1365156. eCollection 2024.
10
GRAF1 Regulates Brown and Beige Adipose Differentiation and Function.
Res Sq. 2023 Dec 19:rs.3.rs-3740465. doi: 10.21203/rs.3.rs-3740465/v1.

本文引用的文献

1
A smooth muscle-like origin for beige adipocytes.
Cell Metab. 2014 May 6;19(5):810-20. doi: 10.1016/j.cmet.2014.03.025. Epub 2014 Apr 4.
2
Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation.
Nat Commun. 2014 Feb 26;5:3368. doi: 10.1038/ncomms4368.
4
UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic.
Cell Rep. 2013 Dec 12;5(5):1196-203. doi: 10.1016/j.celrep.2013.10.044. Epub 2013 Nov 27.
5
Tracking adipogenesis during white adipose tissue development, expansion and regeneration.
Nat Med. 2013 Oct;19(10):1338-44. doi: 10.1038/nm.3324. Epub 2013 Sep 1.
6
Cold acclimation recruits human brown fat and increases nonshivering thermogenesis.
J Clin Invest. 2013 Aug;123(8):3395-403. doi: 10.1172/JCI68993. Epub 2013 Jul 15.
7
EndMT contributes to the onset and progression of cerebral cavernous malformations.
Nature. 2013 Jun 27;498(7455):492-6. doi: 10.1038/nature12207. Epub 2013 Jun 9.
8
PPARγ signaling and metabolism: the good, the bad and the future.
Nat Med. 2013 May;19(5):557-66. doi: 10.1038/nm.3159. Epub 2013 May 7.
9
Bi-directional interconversion of brite and white adipocytes.
Nat Cell Biol. 2013 Jun;15(6):659-67. doi: 10.1038/ncb2740. Epub 2013 Apr 28.
10
Rho-associated coiled-coil kinase (ROCK) signaling and disease.
Crit Rev Biochem Mol Biol. 2013 Jul-Aug;48(4):301-16. doi: 10.3109/10409238.2013.786671. Epub 2013 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验