Suppr超能文献

全球思考,全球行动:一位流行病学家对工具变量估计的看法。

Think globally, act globally: An epidemiologist's perspective on instrumental variable estimation.

作者信息

Swanson Sonja A, Hernán Miguel A

出版信息

Stat Sci. 2014 Aug;29(3):371-374. doi: 10.1214/14-sts491.

Abstract

We appreciated Imbens' summary and reflections on the state of instrumental variable (IV) methods from an econometrician's perspective. His review was much needed as it clarified several issues that have been historically a source of confusion when individuals from different disciplines discussed IV methods. Among the many topics covered by Imbens, we would like to focus on the common choice of the local average treatment effect (LATE) over the "global" average treatment effect (ATE) in IV analyses of epidemiologic data. As Imbens acknowledges, this choice of the LATE as an estimand has been contentious (Angrist, Imbens and Rubin, 1996; Robins and Greenland, 1996; Deaton, 2010; Imbens, 2010; Pearl, 2011). Several authors have questioned the usefulness of the LATE for informing clinical practice and policy decisions, because it only pertains to an unknown subset of the population of interest: the so-called "compliers". To make things worse, many studies do not even report the expected proportion of compliers in the study population (Swanson and Hernán, 2013). Other authors have wondered whether the LATE is advocated for simply because of the relatively weaker assumptions required for its identification, analogous to the drunk who stays close to the lamp post and declares whatever he finds under its light is what he was looking for all along (Deaton, 2010). Here we explore the limitations of the LATE in the context of epidemiologic and public health research. First we discuss the relevance of LATE as an effect measure and conclude that it is not our primary choice. Second, we discuss the tenability of the monotonicity condition and conclude that this assumption is not a plausible one in many common settings. Finally, we propose further alternatives to the LATE, beyond those discussed by Imbens, that refocus on the global ATE in the population of interest.

摘要

我们感谢因本斯从计量经济学家的角度对工具变量(IV)方法的现状进行的总结与思考。他的综述非常必要,因为它澄清了几个问题,这些问题在不同学科的人员讨论IV方法时一直是造成困惑的根源。在因本斯涵盖的众多主题中,我们想聚焦于在流行病学数据的IV分析中,相较于“全局”平均治疗效果(ATE),局部平均治疗效果(LATE)的常见选择。正如因本斯所承认的,将LATE作为一个估计量的这种选择一直存在争议(安格里斯特、因本斯和鲁宾,1996年;罗宾斯和格林兰,1996年;迪顿,2010年;因本斯,2010年;珀尔,2011年)。几位作者质疑LATE对指导临床实践和政策决策的有用性,因为它仅适用于感兴趣人群中一个未知的子集:即所谓的“依从者”。更糟糕的是,许多研究甚至没有报告研究人群中依从者的预期比例(斯旺森和埃尔南,2013年)。其他作者怀疑倡导LATE是否仅仅是因为识别它所需的假设相对较弱,这类似于一个醉汉靠在路灯柱旁,并宣称他在灯光下找到的任何东西就是他一直在寻找的(迪顿,2010年)。在此,我们在流行病学和公共卫生研究的背景下探讨LATE的局限性。首先,我们讨论LATE作为一种效应量的相关性,并得出它不是我们的首要选择的结论。其次,我们讨论单调性条件的合理性,并得出在许多常见情况下这个假设不太合理的结论。最后,我们提出了除因本斯所讨论的之外的LATE的其他替代方法,这些方法重新聚焦于感兴趣人群中的全局ATE。

相似文献

2
Latent class instrumental variables and the monotonicity assumption.
Emerg Themes Epidemiol. 2020 Mar 19;17:2. doi: 10.1186/s12982-020-00088-8. eCollection 2020.
3
Instrumental variable estimation of truncated local average treatment effects.
PLoS One. 2021 Apr 5;16(4):e0249642. doi: 10.1371/journal.pone.0249642. eCollection 2021.
6
Instruments for causal inference: an epidemiologist's dream?
Epidemiology. 2006 Jul;17(4):360-72. doi: 10.1097/01.ede.0000222409.00878.37.
7
Profiling compliers and noncompliers for instrumental variable analysis with covariates: A weighting approach.
PLoS One. 2023 Jun 15;18(6):e0283223. doi: 10.1371/journal.pone.0283223. eCollection 2023.
8
Response to letter to the editor from Dr Rahman Shiri: The challenging topic of suicide across occupational groups.
Scand J Work Environ Health. 2018 Jan 1;44(1):108-110. doi: 10.5271/sjweh.3698. Epub 2017 Dec 8.
9
Reducing unemployment benefit duration to increase job finding rates: a systematic review.
Campbell Syst Rev. 2018 Feb 28;14(1):1-194. doi: 10.4073/csr.2018.2. eCollection 2018.
10
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

2
Effect of Health Literacy on Antiviral Treatment of Hepatitis B: Instrumental Variable Analysis.
JMIR Public Health Surveill. 2024 Dec 16;10:e58391. doi: 10.2196/58391.
4
Participation in Community Gathering Places and Subsequent Health and Well-Being: An Outcome-Wide Analysis.
Innov Aging. 2023 Aug 11;7(9):igad084. doi: 10.1093/geroni/igad084. eCollection 2023.
6
Assessing causal treatment effect estimation when using large observational datasets.
BMC Med Res Methodol. 2019 Nov 14;19(1):207. doi: 10.1186/s12874-019-0858-x.
7
Methodological Challenges When Studying Distance to Care as an Exposure in Health Research.
Am J Epidemiol. 2019 Sep 1;188(9):1674-1681. doi: 10.1093/aje/kwz121.
8
Causal null hypotheses of sustained treatment strategies: What can be tested with an instrumental variable?
Eur J Epidemiol. 2018 Aug;33(8):723-728. doi: 10.1007/s10654-018-0396-6. Epub 2018 May 2.
9
An introduction to instrumental variable assumptions, validation and estimation.
Emerg Themes Epidemiol. 2018 Jan 22;15:1. doi: 10.1186/s12982-018-0069-7. eCollection 2018.
10
Instrumental Variable Analyses in Pharmacoepidemiology: What Target Trials Do We Emulate?
Curr Epidemiol Rep. 2017;4(4):281-287. doi: 10.1007/s40471-017-0120-1. Epub 2017 Oct 17.

本文引用的文献

1
Commentary: how to report instrumental variable analyses (suggestions welcome).
Epidemiology. 2013 May;24(3):370-4. doi: 10.1097/EDE.0b013e31828d0590.
3
Instruments for causal inference: an epidemiologist's dream?
Epidemiology. 2006 Jul;17(4):360-72. doi: 10.1097/01.ede.0000222409.00878.37.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验