Suppr超能文献

基于双重稳健机器学习的工具变量估计方法及其在胆囊炎外科护理中的应用

Doubly robust machine learning-based estimation methods for instrumental variables with an application to surgical care for cholecystitis.

作者信息

Takatsu Kenta, Levis Alexander W, Kennedy Edward, Kelz Rachel, Keele Luke

机构信息

Carnegie Mellon University, United States.

Postdoctoral Researcher, Carnegie Mellon University, United States.

出版信息

J R Stat Soc Ser A Stat Soc. 2024 Sep 24. doi: 10.1093/jrsssa/qnae089.

Abstract

Comparative effectiveness research frequently employs the instrumental variable design since randomized trials can be infeasible for many reasons. In this study, we investigate treatments for emergency -inflammation of the gallbladder. A standard treatment for cholecystitis is surgical removal of the gallbladder, while alternative non-surgical treatments include managed care and pharmaceutical options. As randomized trials are judged to violate the principle of equipoise, we consider an instrument for operative care: the surgeon's tendency to operate. Standard instrumental variable estimation methods, however, often rely on parametric models that are prone to bias from model misspecification. Thus, we outline instrumental variable methods based on the doubly robust machine learning framework. These methods enable us to employ various machine learning techniques, delivering consistent estimates, and permitting valid inference on various estimands. We use these methods to estimate the primary target estimand in an instrumental variable design. Additionally, we expand these methods to develop new estimators for heterogeneous causal effects, profiling principal strata, and sensitivity analyses for a key instrumental variable assumption. We conduct a simulation study to demonstrate scenarios where more flexible estimation methods outperform standard methods. Our findings indicate that operative care is generally more effective for cholecystitis patients, although the benefits of surgery can be less pronounced for key patient subgroups.

摘要

比较效果研究经常采用工具变量设计,因为随机试验由于多种原因可能不可行。在本研究中,我们调查胆囊急性炎症的治疗方法。胆囊炎的标准治疗方法是手术切除胆囊,而替代性的非手术治疗方法包括管理式医疗和药物治疗选择。由于随机试验被判定违反了均衡原则,我们考虑一种手术治疗的工具:外科医生的手术倾向。然而,标准的工具变量估计方法通常依赖于参数模型,这些模型容易因模型设定错误而产生偏差。因此,我们概述了基于双重稳健机器学习框架的工具变量方法。这些方法使我们能够采用各种机器学习技术,提供一致的估计,并允许对各种估计量进行有效推断。我们使用这些方法在工具变量设计中估计主要目标估计量。此外,我们扩展这些方法以开发用于异质性因果效应、剖析主要分层以及对关键工具变量假设进行敏感性分析的新估计器。我们进行了一项模拟研究,以展示更灵活的估计方法优于标准方法的情况。我们的研究结果表明,手术治疗通常对胆囊炎患者更有效,尽管手术对关键患者亚组的益处可能不那么明显。

相似文献

8
Interventions to reduce harm from continued tobacco use.减少持续吸烟危害的干预措施。
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.
10
Omega-3 fatty acids for depression in adults.成人抑郁症的ω-3脂肪酸治疗
Cochrane Database Syst Rev. 2015 Nov 5;2015(11):CD004692. doi: 10.1002/14651858.CD004692.pub4.

本文引用的文献

1
Minimax rates for heterogeneous causal effect estimation.异质因果效应估计的极小极大率
Ann Stat. 2024 Apr;52(2):793-816. doi: 10.1214/24-aos2369. Epub 2024 May 9.
6
Doubly robust adaptive LASSO for effect modifier discovery.双重稳健自适应 LASSO 用于效应修饰因子发现。
Int J Biostat. 2022 Jan 4;18(2):307-327. doi: 10.1515/ijb-2020-0073. eCollection 2022 Nov 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验