Suppr超能文献

鞭毛丝生物模板无机氧化物材料——迈向高效锂电池负极

Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode.

作者信息

Beznosov Sergei N, Veluri Pavan S, Pyatibratov Mikhail G, Chatterjee Abhijit, MacFarlane Douglas R, Fedorov Oleg V, Mitra Sagar

机构信息

Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia.

Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400076 Mumbai, India.

出版信息

Sci Rep. 2015 Jan 13;5:7736. doi: 10.1038/srep07736.

Abstract

Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.

摘要

设计新一代用于电池的高能量密度且可持续的电极材料,以驱动各种应用,是一项紧迫的任务。将生物材料用作这些材料的纳米结构模板,有可能产生迄今无法实现的结构。在本报告中,我们利用极端嗜盐古菌盐生盐杆菌经基因改造的鞭毛丝,合成了纳米结构的氧化铁复合材料,用作锂离子电池阳极。与现有文献结果相比,该电极表现出优异的电化学性能,在50次循环后具有1032 mAh g⁻¹的良好容量保持率,且倍率性能良好,在5 A g⁻¹(~5 C)放电速率下可提供770 mAh g⁻¹。这种基于独特鞭毛丝的模板未来有可能用于制备其他高度结构化的先进能源材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7699/4291565/a8cd41162ef6/srep07736-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验