Suppr超能文献

一种用于中风临床试验中响应自适应随机化的替代主要替换算法。

A surrogate-primary replacement algorithm for response-adaptive randomization in stroke clinical trials.

作者信息

Nowacki Amy S, Zhao Wenle, Palesch Yuko Y

机构信息

1 Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA.

2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.

出版信息

Stat Methods Med Res. 2017 Jun;26(3):1078-1092. doi: 10.1177/0962280214567142. Epub 2015 Jan 12.

Abstract

Response-adaptive randomization (RAR) offers clinical investigators benefit by modifying the treatment allocation probabilities to optimize the ethical, operational, or statistical performance of the trial. Delayed primary outcomes and their effect on RAR have been studied in the literature; however, the incorporation of surrogate outcomes has not been fully addressed. We explore the benefits and limitations of surrogate outcome utilization in RAR in the context of acute stroke clinical trials. We propose a novel surrogate-primary (S-P) replacement algorithm where a patient's surrogate outcome is used in the RAR algorithm only until their primary outcome becomes available to replace it. Computer simulations investigate the effect of both the delay in obtaining the primary outcome and the underlying surrogate and primary outcome distributional discrepancies on complete randomization, standard RAR and the S-P replacement algorithm methods. Results show that when the primary outcome is delayed, the S-P replacement algorithm reduces the variability of the treatment allocation probabilities and achieves stabilization sooner. Additionally, the S-P replacement algorithm benefit proved to be robust in that it preserved power and reduced the expected number of failures across a variety of scenarios.

摘要

响应自适应随机化(RAR)通过修改治疗分配概率来优化试验的伦理、操作或统计性能,从而为临床研究人员带来益处。文献中已经研究了延迟主要结局及其对RAR的影响;然而,替代结局的纳入尚未得到充分探讨。我们在急性中风临床试验的背景下探讨了在RAR中使用替代结局的益处和局限性。我们提出了一种新颖的替代-主要(S-P)替换算法,其中患者的替代结局仅在其主要结局可用以替换它之前用于RAR算法。计算机模拟研究了获得主要结局的延迟以及潜在的替代结局和主要结局分布差异对完全随机化、标准RAR和S-P替换算法方法的影响。结果表明,当主要结局延迟时,S-P替换算法降低了治疗分配概率的变异性,并更快地实现了稳定。此外,S-P替换算法的益处被证明是稳健的,因为它在各种情况下都保持了检验效能并减少了预期的失败次数。

相似文献

4
Balanced covariates with response adaptive randomization.具有响应自适应随机化的平衡协变量。
Pharm Stat. 2017 May;16(3):210-217. doi: 10.1002/pst.1803. Epub 2017 Mar 6.

本文引用的文献

4
The Interventional Management of Stroke (IMS) II Study.卒中的介入治疗(IMS)II研究
Stroke. 2007 Jul;38(7):2127-35. doi: 10.1161/STROKEAHA.107.483131. Epub 2007 May 24.
9
Optimal adaptive designs for binary response trials.二元响应试验的最优适应性设计。
Biometrics. 2001 Sep;57(3):909-13. doi: 10.1111/j.0006-341x.2001.00909.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验