未确诊遗传病的全外显子组测序:解读119个三联体。

Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios.

作者信息

Zhu Xiaolin, Petrovski Slavé, Xie Pingxing, Ruzzo Elizabeth K, Lu Yi-Fan, McSweeney K Melodi, Ben-Zeev Bruria, Nissenkorn Andreea, Anikster Yair, Oz-Levi Danit, Dhindsa Ryan S, Hitomi Yuki, Schoch Kelly, Spillmann Rebecca C, Heimer Gali, Marek-Yagel Dina, Tzadok Michal, Han Yujun, Worley Gordon, Goldstein Jennifer, Jiang Yong-Hui, Lancet Doron, Pras Elon, Shashi Vandana, McHale Duncan, Need Anna C, Goldstein David B

机构信息

Center for Human Genome Variation, Duke University School of Medicine, Durham, North Carolina, USA.

Department of Medicine, University of Melbourne, Austin Health and Royal Melbourne Hospital, Melbourne, Australia.

出版信息

Genet Med. 2015 Oct;17(10):774-81. doi: 10.1038/gim.2014.191. Epub 2015 Jan 15.

Abstract

PURPOSE

Despite the recognized clinical value of exome-based diagnostics, methods for comprehensive genomic interpretation remain immature. Diagnoses are based on known or presumed pathogenic variants in genes already associated with a similar phenotype. Here, we extend this paradigm by evaluating novel bioinformatics approaches to aid identification of new gene-disease associations.

METHODS

We analyzed 119 trios to identify both diagnostic genotypes in known genes and candidate genotypes in novel genes. We considered qualifying genotypes based on their population frequency and in silico predicted effects we also characterized the patterns of genotypes enriched among this collection of patients.

RESULTS

We obtained a genetic diagnosis for 29 (24%) of our patients. We showed that patients carried an excess of damaging de novo mutations in intolerant genes, particularly those shown to be essential in mice (P = 3.4 × 10(-8)). This enrichment is only partially explained by mutations found in known disease-causing genes.

CONCLUSION

This work indicates that the application of appropriate bioinformatics analyses to clinical sequence data can also help implicate novel disease genes and suggest expanded phenotypes for known disease genes. These analyses further suggest that some cases resolved by whole-exome sequencing will have direct therapeutic implications.

摘要

目的

尽管基于外显子组的诊断具有公认的临床价值,但全面的基因组解释方法仍不成熟。诊断基于与相似表型相关的已知或推测的致病基因变异。在此,我们通过评估新型生物信息学方法来扩展这一模式,以帮助识别新的基因-疾病关联。

方法

我们分析了119个三联体,以识别已知基因中的诊断基因型和新基因中的候选基因型。我们根据其人群频率和计算机预测效应来考虑合格的基因型,我们还对这批患者中富集的基因型模式进行了特征描述。

结果

我们为29名(24%)患者获得了基因诊断。我们表明,患者在不耐受基因中携带过量的有害新发突变,特别是那些在小鼠中显示为必需的基因(P = 3.4×10⁻⁸)。这种富集仅部分由已知致病基因中的突变所解释。

结论

这项工作表明,将适当的生物信息学分析应用于临床序列数据也有助于揭示新的疾病基因,并为已知疾病基因提示扩展的表型。这些分析进一步表明,通过全外显子组测序解决的一些病例将具有直接的治疗意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b024/4791490/ee72a2dd0e6d/gim2014191f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索