Devader C, Khayachi A, Veyssière J, Moha Ou Maati H, Roulot M, Moreno S, Borsotto M, Martin S, Heurteaux C, Mazella J
CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université de Nice-Sophia Antipolis, Valbonne, France.
Br J Pharmacol. 2015 May;172(10):2604-17. doi: 10.1111/bph.13083. Epub 2015 Mar 24.
We have described a novel antidepressant peptide, spadin, that acts by blocking the TWIK-related-potassium channel, type 1 (TREK-1). Here, we examined possible mechanisms of action of spadin at both molecular and cellular levels.
Effects of spadin were measured in primary cultures of neurons or tissues from mice injected i.v. with spadin. Western blots, qPCR, histochemical and electrophysiological techniques were used.
In vitro, spadin increased neuronal membrane potential and activated both the MAPK and PI3K signalling pathways, in a time- and concentration-dependent manner. The latter pathway was involved in the protective effect of spadin against staurosporine-induced apoptosis. Also, spadin enhanced both mRNA expression and protein of two markers of synaptogenesis, the post-synaptic density protein of 95 kDalton (PSD-95) and synapsin. We confirmed these effects on synaptogenesis by the observation that spadin treatment significantly increased the proportion of mature spines in cortical neurons. Finally, in vivo injections of spadin led to a rapid increase in both mRNA expression and protein level of brain-derived neurotrophic factor (BDNF) in the hippocampus, confirming the antidepressant action of the peptide. We argue for a new role of spadin in synaptogenesis as both PSD-95 and synapsin mRNA expression and protein levels were further enhanced in the hippocampus, following treatment in vivo with the peptide.
These findings provide new mechanisms of action for the rapidly acting antidepressant peptide spadin by stimulating expression of BDNF and synaptic proteins, both in vitro and in vivo.
我们已描述了一种新型抗抑郁肽——斯帕丁,它通过阻断TWIK相关钾通道1型(TREK-1)发挥作用。在此,我们在分子和细胞水平上研究了斯帕丁可能的作用机制。
在静脉注射斯帕丁的小鼠的原代神经元培养物或组织中测量斯帕丁的作用。使用了蛋白质免疫印迹、定量聚合酶链反应、组织化学和电生理技术。
在体外,斯帕丁以时间和浓度依赖性方式增加神经元膜电位,并激活丝裂原活化蛋白激酶(MAPK)和磷脂酰肌醇-3-激酶(PI3K)信号通路。后一种通路参与了斯帕丁对星形孢菌素诱导的细胞凋亡的保护作用。此外,斯帕丁增强了两种突触形成标志物的mRNA表达和蛋白质水平,即95千道尔顿的突触后致密蛋白(PSD-95)和突触素。通过观察到斯帕丁处理显著增加了皮质神经元中成熟棘突的比例,我们证实了其对突触形成的这些作用。最后,体内注射斯帕丁导致海马体中脑源性神经营养因子(BDNF)的mRNA表达和蛋白质水平迅速增加,证实了该肽的抗抑郁作用。我们认为斯帕丁在突触形成中具有新作用,因为在用该肽进行体内处理后,海马体中PSD-95和突触素的mRNA表达和蛋白质水平进一步增强。
这些发现通过在体外和体内刺激BDNF和突触蛋白的表达,为快速起效的抗抑郁肽斯帕丁提供了新的作用机制。