Martínez Fabio, Manzanera Antoine, Romero Eduardo
Computer Imaging and Medical Applications Laboratory-CIM@LAB, Universidad Nacional de Colombia, Colombia.
Bioinspir Biomim. 2015 Jan 19;10(1):016006. doi: 10.1088/1748-3190/10/1/016006.
A new method for automatic analysis and characterization of recorded hummingbird wing motion is proposed. The method starts by computing a multiscale dense optical flow field, which is used to segment the wings, i.e., pixels with larger velocities. Then, the kinematic and deformation of the wings were characterized as a temporal set of global and local measures: a global angular acceleration as a time function of each wing and a local acceleration profile that approximates the dynamics of the different wing segments. Additionally, the variance of the apparent velocity orientation estimates those wing foci with larger deformation. Finally a local measure of the orientation highlights those regions with maximal deformation. The approach was evaluated in a total of 91 flight cycles, captured using three different setups. The proposed measures follow the yaw turn hummingbird flight dynamics, with a strong correlation of all computed paths, reporting a standard deviation of [Formula: see text] and [Formula: see text] for the global angular acceleration and the global wing deformation respectively.
提出了一种用于自动分析和表征记录的蜂鸟翅膀运动的新方法。该方法首先计算多尺度密集光流场,该光流场用于分割翅膀,即具有较大速度的像素。然后,将翅膀的运动学和变形表征为一组全局和局部测量的时间序列:作为每个翅膀时间函数的全局角加速度和近似不同翅膀段动力学的局部加速度剖面。此外,视在速度方向的方差估计了变形较大的翅膀焦点。最后,方向的局部测量突出了变形最大的区域。该方法在总共91个飞行周期中进行了评估,这些飞行周期是使用三种不同设置捕获的。所提出的测量方法遵循偏航转弯蜂鸟飞行动力学,所有计算路径具有很强的相关性,全局角加速度和全局翅膀变形的标准差分别为[公式:见正文]和[公式:见正文]。