Suppr超能文献

用于烟草疫霉种群分析的多态性微卫星位点的鉴定与验证

Identification and validation of polymorphic microsatellite loci for the analysis of Phytophthora nicotianae populations.

作者信息

Biasi Antonio, Martin Frank, Schena Leonardo

机构信息

Dipartimento di Agraria, Università degli Studi Mediterranea, Località Feo di Vito, 89122 Reggio Calabria, Italy.

United States Department of Agriculture-Agricultural Research Service, 1636 East Alisal Street, 93905 Salinas, CA, United States.

出版信息

J Microbiol Methods. 2015 Mar;110:61-7. doi: 10.1016/j.mimet.2015.01.012. Epub 2015 Jan 17.

Abstract

A large number of SSR loci were screened in the genomic assemblies of 14 different isolates of Phytophthora nicotianae and primers were developed for amplification of 17 markers distributed among different contigs. These loci were highly polymorphic and amplified from genetically distant isolates of the pathogen. Among these, nine were further validated using a multiplexed genotyping assay with differentially labeled primers (FAM or HEX) to allow for duplex PCR amplification. The use of reverse primers with a 5' PIG tail was important to increase the quality and reliability of the analyses. A total of 46 alleles were detected in 5 tester isolates of P. nicotianae representing the breadth of diversity in the species. Furthermore, a high incidence of heterozygosity was determined with two alleles detected in 67% of the primer/isolate combinations. Three different alleles where detected for a single locus/isolate combination, indicating variation in ploidy. These markers represent a valuable new tool for the characterization of populations of P. nicotianae.

摘要

在14种不同的烟草疫霉分离株的基因组组装中筛选了大量简单序列重复(SSR)位点,并开发了引物用于扩增分布在不同重叠群中的17个标记。这些位点具有高度多态性,可从该病原菌的遗传距离较远的分离株中扩增出来。其中,9个位点通过使用带有差异标记引物(FAM或HEX)的多重基因分型分析进一步验证,以实现双重PCR扩增。使用带有5'猪尾的反向引物对于提高分析的质量和可靠性很重要。在代表该物种多样性广度的5个烟草疫霉测试分离株中总共检测到46个等位基因。此外,在67%的引物/分离株组合中检测到两个等位基因,确定杂合率很高。在单个位点/分离株组合中检测到三个不同的等位基因,表明存在倍性变异。这些标记是表征烟草疫霉群体的有价值的新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验