Markovits Henry, Brisson Janie, de Chantal Pier-Luc
Université du Québec à Montréal.
J Exp Psychol Learn Mem Cogn. 2015 Jul;41(4):949-56. doi: 10.1037/xlm0000092. Epub 2015 Jan 19.
One of the major debates concerning the nature of inferential reasoning is between counterexample-based theories such as mental model theory and probabilistic theories. This study looks at conclusion updating after the addition of statistical information to examine the hypothesis that deductive reasoning cannot be explained by probabilistic inferences. In Study 1, participants were given an initial "If P then Q rule" for a phenomenon on a recently discovered planet, told that "Q was true," and asked to make a judgment of either deductive validity or probabilistic likelihood of the putative conclusion that "P is true." They were then told the results of 1,000 observations. In the low-probability problem, 950 times P was false and Q was true, whereas 50 times P was true and Q was true. In the high-probability problem, these proportions were inverted. On the low-probability problem, probabilistic ratings and judgments of logical validity decreased. However, on the high-probability problem, probabilistic ratings remained high whereas judgments of logical validity significantly decreased. Confidence ratings were consistent with this different pattern for probabilistic and for deductive inferences. Study 2 replicated this result with another form of inference, "If P then Q. P is false." These results show that deductive updating is not explicable by Bayesian updating.
关于推理本质的主要争论之一存在于基于反例的理论(如心理模型理论)和概率理论之间。本研究着眼于在添加统计信息后结论的更新情况,以检验演绎推理无法用概率推理来解释这一假设。在研究1中,参与者被给予一个关于最近发现的行星上某一现象的初始“如果P那么Q规则”,被告知“Q为真”,并被要求对“P为真”这一假定结论的演绎有效性或概率可能性做出判断。然后他们被告知1000次观察的结果。在低概率问题中,P为假且Q为真的情况出现了950次,而P为真且Q为真的情况出现了50次。在高概率问题中,这些比例则相反。在低概率问题上,概率评级和逻辑有效性判断下降。然而,在高概率问题上,概率评级仍然很高,而逻辑有效性判断则显著下降。信心评级与概率推理和演绎推理的这种不同模式一致。研究2用另一种推理形式“如果P那么Q。P为假”重复了这一结果。这些结果表明,演绎更新无法用贝叶斯更新来解释。