Suppr超能文献

一种用于脑部髓鞘水成像的多组分T2弛豫测量算法。

A multicomponent T2 relaxometry algorithm for myelin water imaging of the brain.

作者信息

Björk Marcus, Zachariah Dave, Kullberg Joel, Stoica Petre

机构信息

Department of Information Technology, Uppsala University, Uppsala, Sweden.

Department of Radiology, Uppsala University, Uppsala, Sweden.

出版信息

Magn Reson Med. 2016 Jan;75(1):390-402. doi: 10.1002/mrm.25583. Epub 2015 Jan 21.

Abstract

PURPOSE

Models based on a sum of damped exponentials occur in many applications, particularly in multicomponent T2 relaxometry. The problem of estimating the relaxation parameters and the corresponding amplitudes is known to be difficult, especially as the number of components increases. In this article, the commonly used non-negative least squares spectrum approach is compared to a recently published estimation algorithm abbreviated as Exponential Analysis via System Identification using Steiglitz-McBride.

METHODS

The two algorithms are evaluated via simulation, and their performance is compared to a statistical benchmark on precision given by the Cramér-Rao bound. By applying the algorithms to an in vivo brain multi-echo spin-echo dataset, containing 32 images, estimates of the myelin water fraction are computed.

RESULTS

Exponential Analysis via System Identification using Steiglitz-McBride is shown to have superior performance when applied to simulated T2 relaxation data. For the in vivo brain, Exponential Analysis via System Identification using Steiglitz-McBride gives an myelin water fraction map with a more concentrated distribution of myelin water and less noise, compared to non-negative least squares.

CONCLUSION

The Exponential Analysis via System Identification using Steiglitz-McBride algorithm provides an efficient and user-parameter-free alternative to non-negative least squares for estimating the parameters of multiple relaxation components and gives a new way of estimating the spatial variations of myelin in the brain.

摘要

目的

基于阻尼指数之和的模型出现在许多应用中,特别是在多组分T2弛豫测量中。已知估计弛豫参数和相应幅度的问题很困难,尤其是随着组分数目的增加。在本文中,将常用的非负最小二乘谱方法与最近发表的一种估计算法进行了比较,该算法简称为使用Steiglitz-McBride通过系统辨识进行指数分析。

方法

通过模拟对这两种算法进行评估,并将它们的性能与由克拉美罗界给出的精度统计基准进行比较。通过将算法应用于包含32幅图像的体内脑多回波自旋回波数据集,计算髓鞘水分数的估计值。

结果

当应用于模拟的T2弛豫数据时,使用Steiglitz-McBride通过系统辨识进行指数分析显示出卓越的性能。对于体内脑,与非负最小二乘法相比,使用Steiglitz-McBride通过系统辨识进行指数分析得到的髓鞘水分数图中,髓鞘水的分布更集中且噪声更少。

结论

使用Steiglitz-McBride通过系统辨识进行指数分析算法为估计多个弛豫组分的参数提供了一种高效且无需用户参数的替代非负最小二乘法的方法,并给出了一种估计脑内髓鞘空间变化的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验