Suppr超能文献

利用保留边缘的空间先验信息从多回波T2磁共振成像中进行稳健的髓鞘定量成像。

Robust myelin quantitative imaging from multi-echo T2 MRI using edge preserving spatial priors.

作者信息

Shen Xiaobo, Nguyen Thanh D, Gauthier Susan A, Raj Ashish

机构信息

Department of Computer Science, Cornell University, Ithaca, NY, USA.

Department of Radiology, Weill Cornell Medical College, New York, NY, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):622-30. doi: 10.1007/978-3-642-40811-3_78.

Abstract

Demyelinating diseases such as multiple sclerosis cause changes in the brain white matter microstructure. Multi-exponential T2 relaxometry is a powerful technology for detecting these changes by generating a myelin water fraction (MWF) map. However, conventional approaches are subject to noise and spatial in-consistence. We proposed a novel approach by imposing spatial consistency and smoothness constraints. We first introduce a two-Gaussian model to approximate the T2 distribution. Then an expectation-maximization framework is introduced with an edge-preserving prior incorporated. Three-dimensional multi-echo MRI data sets were collected from three patients and three healthy volunteers. MWF maps obtained using the conventional, Spatially Regularized Non-negative Least Squares (srNNLS) algorithm as well as the proposed algorithm are compared. The proposed method provides MWF maps with improved depiction of brain structures and significantly lower coefficients of variance in various brain regions,

摘要

脱髓鞘疾病如多发性硬化症会导致脑白质微观结构发生变化。多指数T2弛豫测量法是一种通过生成髓磷脂水分数(MWF)图来检测这些变化的强大技术。然而,传统方法容易受到噪声和空间不一致性的影响。我们提出了一种通过施加空间一致性和平滑性约束的新方法。我们首先引入一个双高斯模型来近似T2分布。然后引入一个期望最大化框架,并结合了一个保边先验。从三名患者和三名健康志愿者那里收集了三维多回波MRI数据集。比较了使用传统的空间正则化非负最小二乘法(srNNLS)算法以及所提出的算法获得的MWF图。所提出的方法提供的MWF图对脑结构的描绘有所改善,并且各个脑区的方差系数显著降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验