Suppr超能文献

全局核小体定位调控拟南芥中水杨酸介导的转录。

Global nucleosome positioning regulates salicylic acid mediated transcription in Arabidopsis thaliana.

作者信息

Singh Mala, Bag Sumit Kumar, Bhardwaj Archana, Ranjan Amol, Mantri Shrikant, Nigam Deepti, Sharma Yogesh Kumar, Sawant Samir Vishwanath

机构信息

CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.

Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001, India.

出版信息

BMC Plant Biol. 2015 Jan 21;15:13. doi: 10.1186/s12870-014-0404-2.

Abstract

BACKGROUND

The nucleosome positioning regulates the gene expression and many other DNA-related processes in eukaryotes. Genome-wide mapping of nucleosome positions and correlation of genome-wide nucleosomal remodeling with the changes in the gene expression can help us understanding gene regulation on genome level.

RESULTS

In the present study, we correlate the gene expression and the genomic nucleosomal remodeling in response to salicylic acid (SA) treatment in A. thaliana. We have mapped genome-wide nucleosomes by performing tiling microarray using 146 bp mononucleosomal template DNA. The average nucleosomal coverage is approximately 346 bp per nucleosome both under the control and the SA-treated conditions. The nucleosomal coverage is more in the coding region than in the 5' regulatory regions. We observe approximately 50% nucleosomal remodeling on SA treatment where significant nucleosomal depletion and nucleosomal enrichment around the transcription start site (TSS) occur in SA induced genes and SA repressed genes respectively in response to SA treatment. Especially in the case of the SA-induced group, the nucleosomal remodeling over the minimal promoter in response to SA is especially significant in the Non-expresser of PR1 (NPR1)-dependent genes. A detailed investigation of npr1-1 mutant confirms a distinct role of NPR1 in the nucleosome remodeling over the core promoter. We have also identified several motifs for various hormonal responses; including ABRE elements in the remodeled nucleosomal regions around the promoter region in the SA regulated genes. We have further identified that the W-box and TGACG/C motif, reported to play an important role in SA-mediated induction, are enriched in nucleosome free regions (NFRs) of the promoter region of the SA induced genes.

CONCLUSIONS

This is the first study reporting genome-wide effects of SA treatment on the chromatin architecture of A. thaliana. It also reports significant role of NPR1 in genome-wide nucleosomal remodeling in response to SA.

摘要

背景

核小体定位调节真核生物中的基因表达及许多其他与DNA相关的过程。全基因组范围内核小体位置的图谱绘制以及全基因组核小体重塑与基因表达变化的相关性,有助于我们从基因组水平理解基因调控。

结果

在本研究中,我们将拟南芥中水杨酸(SA)处理后的基因表达与基因组核小体重塑进行了关联。我们使用146 bp的单核小体模板DNA通过平铺微阵列绘制了全基因组范围的核小体图谱。在对照和SA处理条件下,每个核小体的平均核小体覆盖范围约为346 bp。编码区的核小体覆盖范围比5'调控区更多。我们观察到SA处理后约50%的核小体重塑,其中SA诱导基因和SA抑制基因分别在转录起始位点(TSS)周围出现显著的核小体缺失和核小体富集,以响应SA处理。特别是在SA诱导组的情况下,响应SA时最小启动子上的核小体重塑在PR1非表达子(NPR1)依赖性基因中尤为显著。对npr1 - 1突变体的详细研究证实了NPR1在核心启动子上的核小体重塑中具有独特作用。我们还鉴定了几种不同激素反应的基序;包括SA调控基因启动子区域周围重塑的核小体区域中的ABRE元件。我们进一步鉴定出据报道在SA介导的诱导中起重要作用的W - box和TGACG/C基序,在SA诱导基因启动子区域的无核小体区域(NFRs)中富集。

结论

这是第一项报道SA处理对拟南芥染色质结构全基因组影响的研究。它还报道了NPR1在响应SA的全基因组核小体重塑中的重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/333c/4318435/0fd3f727abd8/12870_2014_404_Fig1_HTML.jpg

相似文献

2
Genome-wide chromatin mapping with size resolution reveals a dynamic sub-nucleosomal landscape in Arabidopsis.
PLoS Genet. 2017 Sep 13;13(9):e1006988. doi: 10.1371/journal.pgen.1006988. eCollection 2017 Sep.
6
Interactions between upstream and core promoter sequences determine gene expression and nucleosome positioning in tobacco PR-1a promoter.
Biochim Biophys Acta. 2008 Oct;1779(10):634-44. doi: 10.1016/j.bbagrm.2008.07.010. Epub 2008 Aug 5.
7
Epigenetic malleability at core promoter initiates tobacco PR-1a expression post salicylic acid treatment.
Mol Biol Rep. 2023 Jan;50(1):417-431. doi: 10.1007/s11033-022-08074-w. Epub 2022 Nov 6.
8
A W-box is required for full expression of the SA-responsive gene SFR2.
Gene. 2005 Jan 3;344:181-92. doi: 10.1016/j.gene.2004.09.016. Epub 2004 Nov 19.

引用本文的文献

1
Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade.
Mol Plant. 2024 Oct 7;17(10):1558-1572. doi: 10.1016/j.molp.2024.08.008. Epub 2024 Aug 22.
2
Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade.
bioRxiv. 2024 Jan 4:2024.01.03.574047. doi: 10.1101/2024.01.03.574047.
4
Plant Promoters and Terminators for High-Precision Bioengineering.
Biodes Res. 2023 Jul 7;5:0013. doi: 10.34133/bdr.0013. eCollection 2023.
5
DhMYB2 and DhbHLH1 regulates anthocyanin accumulation activation of late biosynthesis genes in -type .
Front Plant Sci. 2022 Nov 15;13:1046134. doi: 10.3389/fpls.2022.1046134. eCollection 2022.
6
Early wound-responsive cues regulate the expression of WRKY family genes in chickpea differently under wounded and unwounded conditions.
Physiol Mol Biol Plants. 2022 Apr;28(4):719-735. doi: 10.1007/s12298-022-01170-y. Epub 2022 Apr 1.
7
Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis.
PLoS Pathog. 2021 May 20;17(5):e1009572. doi: 10.1371/journal.ppat.1009572. eCollection 2021 May.
8
FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After Infection.
Front Plant Sci. 2021 Feb 4;12:606791. doi: 10.3389/fpls.2021.606791. eCollection 2021.
9
Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance.
Plant Physiol. 2019 Oct;181(2):817-833. doi: 10.1104/pp.19.00673. Epub 2019 Jul 23.
10
Ethylene Response Factor ERF11 Activates Transcription to Regulate Immunity to .
Plant Physiol. 2019 Jun;180(2):1132-1151. doi: 10.1104/pp.18.01209. Epub 2019 Mar 29.

本文引用的文献

1
An ANN-GA model based promoter prediction in Arabidopsis thaliana using tilling microarray data.
Bioinformation. 2011;6(6):240-3. doi: 10.6026/97320630006240. Epub 2011 Jun 6.
2
Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism.
Annu Rev Phytopathol. 2011;49:317-43. doi: 10.1146/annurev-phyto-073009-114447.
3
A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome.
Science. 2011 May 20;332(6032):977-80. doi: 10.1126/science.1200508.
4
The effect of micrococcal nuclease digestion on nucleosome positioning data.
PLoS One. 2010 Dec 29;5(12):e15754. doi: 10.1371/journal.pone.0015754.
5
Relationship between nucleosome positioning and DNA methylation.
Nature. 2010 Jul 15;466(7304):388-92. doi: 10.1038/nature09147. Epub 2010 May 30.
6
agriGO: a GO analysis toolkit for the agricultural community.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W64-70. doi: 10.1093/nar/gkq310. Epub 2010 Apr 30.
8
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo.
Nat Struct Mol Biol. 2009 Aug;16(8):847-52. doi: 10.1038/nsmb.1636. Epub 2009 Jul 20.
9
What controls nucleosome positions?
Trends Genet. 2009 Aug;25(8):335-43. doi: 10.1016/j.tig.2009.06.002. Epub 2009 Jul 10.
10
Nucleosome positioning: how is it established, and why does it matter?
Dev Biol. 2010 Mar 15;339(2):258-66. doi: 10.1016/j.ydbio.2009.06.012. Epub 2009 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验