Lindert Steffen, Cheng Yuanhua, Kekenes-Huskey Peter, Regnier Michael, McCammon J Andrew
Department of Pharmacology, University of California San Diego, La Jolla, California; NSF Center for Theoretical Biological Physics, La Jolla, California.
Department of Bioengineering, University of Washington, Seattle, Washington.
Biophys J. 2015 Jan 20;108(2):395-407. doi: 10.1016/j.bpj.2014.11.3461.
Cardiac troponin (cTn) is a key molecule in the regulation of human cardiac muscle contraction. The N-terminal cardiac-specific peptide of the inhibitory subunit of troponin, cTnI (cTnI(1-39)), is a target for phosphorylation by protein kinase A (PKA) during β-adrenergic stimulation. We recently presented evidence indicating that this peptide interacts with the inhibitory peptide (cTnl(137-147)) when S23 and S24 are phosphorylated. The inhibitory peptide is also the target of the point mutation cTnI-R145G, which is associated with hypertrophic cardiomyopathy (HCM), a disease associated with sudden death in apparently healthy young adults. It has been shown that both phosphorylation and this mutation alter the cTnC-cTnI (C-I) interaction, which plays a crucial role in modulating contractile activation. However, little is known about the molecular-level events underlying this modulation. Here, we computationally investigated the effects of the cTnI-R145G mutation on the dynamics of cTn, cTnC Ca(2+) handling, and the C-I interaction. Comparisons were made with the cTnI-R145G/S23D/S24D phosphomimic mutation, which has been used both experimentally and computationally to study the cTnI N-terminal specific effects of PKA phosphorylation. Additional comparisons between the phosphomimic mutations and the real phosphorylations were made. For this purpose, we ran triplicate 150 ns molecular dynamics simulations of cTnI-R145G Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), cTnI-R145G/S23D/S24D Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), and cTnI-R145G/PS23/PS24 Ca(2+)-bound cTnC(1-161)-cTnI(1-172)-cTnT(236-285), respectively. We found that the cTnI-R145G mutation did not impact the overall dynamics of cTn, but stabilized crucial Ca(2+)-coordinating interactions. However, the phosphomimic mutations increased overall cTn fluctuations and destabilized Ca(2+) coordination. Interestingly, cTnI-R145G blunted the intrasubunit interactions between the cTnI N-terminal extension and the cTnI inhibitory peptide, which have been suggested to play a crucial role in modulating troponin function during β-adrenergic stimulation. These findings offer a molecular-level explanation for how the HCM mutation cTnI-R145G reduces the modulation of cTn by phosphorylation of S23/S24 during β-adrenergic stimulation.
心肌肌钙蛋白(cTn)是调节人类心肌收缩的关键分子。肌钙蛋白抑制亚基的N端心脏特异性肽,即cTnI(cTnI(1 - 39)),是β-肾上腺素能刺激期间蛋白激酶A(PKA)磷酸化的靶点。我们最近提供的证据表明,当S23和S24被磷酸化时,该肽与抑制肽(cTnl(137 - 147))相互作用。抑制肽也是点突变cTnI - R145G的靶点,该突变与肥厚型心肌病(HCM)相关,HCM是一种在看似健康的年轻人中与猝死相关的疾病。已经表明,磷酸化和这种突变都会改变cTnC - cTnI(C - I)相互作用,这在调节收缩激活中起关键作用。然而,对于这种调节背后的分子水平事件知之甚少。在这里,我们通过计算研究了cTnI - R145G突变对cTn动力学、cTnC钙处理以及C - I相互作用的影响。与cTnI - R145G/S23D/S24D磷酸模拟突变进行了比较,该突变已在实验和计算中用于研究PKA磷酸化对cTnI N端的特异性影响。还对磷酸模拟突变与实际磷酸化之间进行了额外比较。为此,我们分别对结合Ca(2+)的cTnI - R145G cTnC(1 - 161)-cTnI(1 - 172)-cTnT(236 - 285)、结合Ca(2+)的cTnI - R145G/S23D/S24D cTnC(1 - 161)-cTnI(1 - 172)-cTnT(236 - 285)和结合Ca(2+)的cTnI - R145G/PS23/PS24 cTnC(1 - 161)-cTnI(1 - 172)-cTnT(236 - 285)进行了三次重复的150 ns分子动力学模拟。我们发现cTnI - R145G突变不影响cTn的整体动力学,但稳定了关键的钙配位相互作用。然而,磷酸模拟突变增加了cTn的整体波动并使钙配位不稳定。有趣的是,cTnI - R145G减弱了cTnI N端延伸与cTnI抑制肽之间的亚基内相互作用,这些相互作用被认为在β-肾上腺素能刺激期间调节肌钙蛋白功能中起关键作用。这些发现为HCM突变cTnI - R145G如何在β-肾上腺素能刺激期间通过S23/S24磷酸化减少cTn的调节提供了分子水平的解释。