Cheng Yuanhua, Lindert Steffen, Kekenes-Huskey Peter, Rao Vijay S, Solaro R John, Rosevear Paul R, Amaro Rommie, McCulloch Andrew D, McCammon J Andrew, Regnier Michael
Department of Bioengineering, University of Washington, Seattle, Washington; National Biomedical Computational Resource, University of California, San Diego, La Jolla, California.
National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California.
Biophys J. 2014 Oct 7;107(7):1675-85. doi: 10.1016/j.bpj.2014.08.008.
During β-adrenergic stimulation, cardiac troponin I (cTnI) is phosphorylated by protein kinase A (PKA) at sites S23/S24, located at the N-terminus of cTnI. This phosphorylation has been shown to decrease KCa and pCa50, and weaken the cTnC-cTnI (C-I) interaction. We recently reported that phosphorylation results in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow), which speeds up the overall relaxation. However, as the N-terminus of cTnI (residues 1-40) has not been resolved in the whole cardiac troponin (cTn) structure, little is known about the molecular-level behavior within the whole cTn complex upon phosphorylation of the S23/S24 residues of cTnI that results in these changes in function. In this study, we built up the cTn complex structure (including residues cTnC 1-161, cTnI 1-172, and cTnT 236-285) with the N-terminus of cTnI. We performed molecular-dynamics (MD) simulations to elucidate the structural basis of PKA phosphorylation-induced changes in cTn structure and Ca(2+) binding. We found that introducing two phosphomimic mutations into sites S23/S24 had no significant effect on the coordinating residues of Ca(2+) binding site II. However, the overall fluctuation of cTn was increased and the C-I interaction was altered relative to the wild-type model. The most significant changes involved interactions with the N-terminus of cTnI. Interestingly, the phosphomimic mutations led to the formation of intrasubunit interactions between the N-terminus and the inhibitory peptide of cTnI. This may result in altered interactions with cTnC and could explain the increased rate and decreased duration of slow-phase relaxation seen in myofibrils.
在β-肾上腺素能刺激过程中,心肌肌钙蛋白I(cTnI)在位于cTnI N端的S23/S24位点被蛋白激酶A(PKA)磷酸化。这种磷酸化已被证明会降低KCa和pCa50,并削弱cTnC-cTnI(C-I)相互作用。我们最近报道,磷酸化导致早期缓慢舒张期速率(kREL,slow)增加,其持续时间(tREL,slow)减少,从而加速整体舒张。然而,由于在整个心肌肌钙蛋白(cTn)结构中cTnI的N端(第1-40位氨基酸残基)尚未解析,因此对于cTnI的S23/S24残基磷酸化导致这些功能变化时,整个cTn复合物在分子水平上的行为了解甚少。在本研究中,我们构建了包含cTnI N端的cTn复合物结构(包括cTnC 1-161位氨基酸残基、cTnI 1-172位氨基酸残基和cTnT 236-285位氨基酸残基)。我们进行了分子动力学(MD)模拟,以阐明PKA磷酸化诱导的cTn结构和Ca(2+)结合变化的结构基础。我们发现,在S23/S24位点引入两个磷酸模拟突变对Ca(2+)结合位点II的配位残基没有显著影响。然而,相对于野生型模型,cTn的整体波动增加,C-I相互作用发生改变。最显著的变化涉及与cTnI N端的相互作用。有趣的是,磷酸模拟突变导致cTnI的N端与抑制肽之间形成亚基内相互作用。这可能导致与cTnC的相互作用改变,并可以解释在肌原纤维中观察到的缓慢舒张期速率增加和持续时间减少。