Suppr超能文献

S23D/S24D肌钙蛋白I突变对心肌肌钙蛋白结构动力学影响的计算研究

Computational studies of the effect of the S23D/S24D troponin I mutation on cardiac troponin structural dynamics.

作者信息

Cheng Yuanhua, Lindert Steffen, Kekenes-Huskey Peter, Rao Vijay S, Solaro R John, Rosevear Paul R, Amaro Rommie, McCulloch Andrew D, McCammon J Andrew, Regnier Michael

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington; National Biomedical Computational Resource, University of California, San Diego, La Jolla, California.

National Biomedical Computational Resource, University of California, San Diego, La Jolla, California; Department of Pharmacology, University of California, San Diego, La Jolla, California.

出版信息

Biophys J. 2014 Oct 7;107(7):1675-85. doi: 10.1016/j.bpj.2014.08.008.

Abstract

During β-adrenergic stimulation, cardiac troponin I (cTnI) is phosphorylated by protein kinase A (PKA) at sites S23/S24, located at the N-terminus of cTnI. This phosphorylation has been shown to decrease KCa and pCa50, and weaken the cTnC-cTnI (C-I) interaction. We recently reported that phosphorylation results in an increase in the rate of early, slow phase of relaxation (kREL,slow) and a decrease in its duration (tREL,slow), which speeds up the overall relaxation. However, as the N-terminus of cTnI (residues 1-40) has not been resolved in the whole cardiac troponin (cTn) structure, little is known about the molecular-level behavior within the whole cTn complex upon phosphorylation of the S23/S24 residues of cTnI that results in these changes in function. In this study, we built up the cTn complex structure (including residues cTnC 1-161, cTnI 1-172, and cTnT 236-285) with the N-terminus of cTnI. We performed molecular-dynamics (MD) simulations to elucidate the structural basis of PKA phosphorylation-induced changes in cTn structure and Ca(2+) binding. We found that introducing two phosphomimic mutations into sites S23/S24 had no significant effect on the coordinating residues of Ca(2+) binding site II. However, the overall fluctuation of cTn was increased and the C-I interaction was altered relative to the wild-type model. The most significant changes involved interactions with the N-terminus of cTnI. Interestingly, the phosphomimic mutations led to the formation of intrasubunit interactions between the N-terminus and the inhibitory peptide of cTnI. This may result in altered interactions with cTnC and could explain the increased rate and decreased duration of slow-phase relaxation seen in myofibrils.

摘要

在β-肾上腺素能刺激过程中,心肌肌钙蛋白I(cTnI)在位于cTnI N端的S23/S24位点被蛋白激酶A(PKA)磷酸化。这种磷酸化已被证明会降低KCa和pCa50,并削弱cTnC-cTnI(C-I)相互作用。我们最近报道,磷酸化导致早期缓慢舒张期速率(kREL,slow)增加,其持续时间(tREL,slow)减少,从而加速整体舒张。然而,由于在整个心肌肌钙蛋白(cTn)结构中cTnI的N端(第1-40位氨基酸残基)尚未解析,因此对于cTnI的S23/S24残基磷酸化导致这些功能变化时,整个cTn复合物在分子水平上的行为了解甚少。在本研究中,我们构建了包含cTnI N端的cTn复合物结构(包括cTnC 1-161位氨基酸残基、cTnI 1-172位氨基酸残基和cTnT 236-285位氨基酸残基)。我们进行了分子动力学(MD)模拟,以阐明PKA磷酸化诱导的cTn结构和Ca(2+)结合变化的结构基础。我们发现,在S23/S24位点引入两个磷酸模拟突变对Ca(2+)结合位点II的配位残基没有显著影响。然而,相对于野生型模型,cTn的整体波动增加,C-I相互作用发生改变。最显著的变化涉及与cTnI N端的相互作用。有趣的是,磷酸模拟突变导致cTnI的N端与抑制肽之间形成亚基内相互作用。这可能导致与cTnC的相互作用改变,并可以解释在肌原纤维中观察到的缓慢舒张期速率增加和持续时间减少。

相似文献

5
Effects of Cardiac Troponin I Mutation P83S on Contractile Properties and the Modulation by PKA-Mediated Phosphorylation.
J Phys Chem B. 2016 Aug 25;120(33):8238-53. doi: 10.1021/acs.jpcb.6b01859. Epub 2016 May 18.
6
Interactions at the NH2-terminal interface of cardiac troponin I modulate myofilament activation.
J Mol Cell Cardiol. 1999 Feb;31(2):363-75. doi: 10.1006/jmcc.1998.0870.
7
Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres.
J Biol Chem. 2016 Oct 7;291(41):21817-21828. doi: 10.1074/jbc.M116.746172. Epub 2016 Aug 24.
8
Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C.
J Mol Biol. 2021 Jun 25;433(13):167010. doi: 10.1016/j.jmb.2021.167010. Epub 2021 Apr 24.
9
Phosphorylation of cardiac troponin I at protein kinase C site threonine 144 depresses cooperative activation of thin filaments.
J Biol Chem. 2010 Apr 16;285(16):11810-7. doi: 10.1074/jbc.M109.055657. Epub 2010 Feb 17.

引用本文的文献

1
Troponin I - a comprehensive review of its function, structure, evolution, and role in muscle diseases.
Anim Cells Syst (Seoul). 2025 Jul 28;29(1):446-468. doi: 10.1080/19768354.2025.2533821. eCollection 2025.
3
Arg92Leu-cTnT Alters the cTnC-cTnI Interface Disrupting PKA-Mediated Relaxation.
Circ Res. 2024 Oct 25;135(10):974-989. doi: 10.1161/CIRCRESAHA.124.325223. Epub 2024 Sep 27.
4
Focus on cardiac troponin complex: From gene expression to cardiomyopathy.
Genes Dis. 2024 Mar 11;11(6):101263. doi: 10.1016/j.gendis.2024.101263. eCollection 2024 Nov.
5
Glutamate 139 of tropomyosin is critical for cardiac thin filament blocked-state stabilization.
J Mol Cell Cardiol. 2024 Mar;188:30-37. doi: 10.1016/j.yjmcc.2024.01.004. Epub 2024 Jan 22.
6
Modulation of Structure and Dynamics of Cardiac Troponin by Phosphorylation and Mutations Revealed by Molecular Dynamics Simulations.
J Phys Chem B. 2023 Oct 19;127(41):8736-8748. doi: 10.1021/acs.jpcb.3c02337. Epub 2023 Oct 4.
7
Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis.
Front Cardiovasc Med. 2023 Jan 24;9:1060716. doi: 10.3389/fcvm.2022.1060716. eCollection 2022.
9
Computational Exploration and Characterization of Potential Calcium Sensitizing Mutations in Cardiac Troponin C.
J Chem Inf Model. 2022 Dec 12;62(23):6201-6208. doi: 10.1021/acs.jcim.2c01132. Epub 2022 Nov 16.
10
Umbrella Sampling Simulations Measure Switch Peptide Binding and Hydrophobic Patch Opening Free Energies in Cardiac Troponin.
J Chem Inf Model. 2022 Nov 28;62(22):5666-5674. doi: 10.1021/acs.jcim.2c00508. Epub 2022 Oct 25.

本文引用的文献

2
Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints.
PLoS One. 2014 Feb 18;9(2):e87135. doi: 10.1371/journal.pone.0087135. eCollection 2014.
3
Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24.
J Physiol. 2013 Sep 15;591(18):4535-47. doi: 10.1113/jphysiol.2013.258400. Epub 2013 Jul 8.
4
Structural and functional consequences of cardiac troponin C L57Q and I61Q Ca(2+)-desensitizing variants.
Arch Biochem Biophys. 2013 Jul 1;535(1):68-75. doi: 10.1016/j.abb.2013.02.006. Epub 2013 Feb 28.
6
Impact of site-specific phosphorylation of protein kinase A sites Ser23 and Ser24 of cardiac troponin I in human cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2013 Jan 15;304(2):H260-8. doi: 10.1152/ajpheart.00498.2012. Epub 2012 Nov 9.
7
N-terminal phosphorylation of cardiac troponin-I reduces length-dependent calcium sensitivity of contraction in cardiac muscle.
J Physiol. 2013 Jan 15;591(2):475-90. doi: 10.1113/jphysiol.2012.241604. Epub 2012 Nov 5.
9
Structural and functional consequences of the cardiac troponin C L48Q Ca(2+)-sensitizing mutation.
Biochemistry. 2012 Jun 5;51(22):4473-87. doi: 10.1021/bi3003007. Epub 2012 May 23.
10
Molecular dynamics and docking studies on cardiac troponin C.
J Biomol Struct Dyn. 2011 Aug;29(1):123-35. doi: 10.1080/07391102.2011.10507378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验