Mallon Dermot H, Bradley J Andrew, Winn Peter J, Taylor Craig J, Kosmoliaptsis Vasilis
1 Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom. 2 School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom. 3 Tissue Typing Laboratory, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
Transplantation. 2015 Feb;99(2):385-90. doi: 10.1097/TP.0000000000000546.
We have previously shown that qualitative assessment of surface electrostatic potential of HLA class I molecules helps explain serological patterns of alloantibody binding. We have now used a novel computational approach to quantitate differences in surface electrostatic potential of HLA B-cell epitopes and applied this to explain HLA Bw4 and Bw6 antigenicity.
Protein structure models of HLA class I alleles expressing either the Bw4 or Bw6 epitope (defined by sequence motifs at positions 77 to 83) were generated using comparative structure prediction. The electrostatic potential in 3-dimensional space encompassing the Bw4/Bw6 epitope was computed by solving the Poisson-Boltzmann equation and quantitatively compared in a pairwise, all-versus-all fashion to produce distance matrices that cluster epitopes with similar electrostatics properties.
Quantitative comparison of surface electrostatic potential at the carboxyl terminal of the α1-helix of HLA class I alleles, corresponding to amino acid sequence motif 77 to 83, produced clustering of HLA molecules in 3 principal groups according to Bw4 or Bw6 epitope expression. Remarkably, quantitative differences in electrostatic potential reflected known patterns of serological reactivity better than Bw4/Bw6 amino acid sequence motifs. Quantitative assessment of epitope electrostatic potential allowed the impact of known amino acid substitutions (HLA-B*07:02 R79G, R82L, G83R) that are critical for antibody binding to be predicted.
We describe a novel approach for quantitating differences in HLA B-cell epitope electrostatic potential. Proof of principle is provided that this approach enables better assessment of HLA epitope antigenicity than amino acid sequence data alone, and it may allow prediction of HLA immunogenicity.
我们之前已经表明,对HLA I类分子表面静电势进行定性评估有助于解释同种异体抗体结合的血清学模式。我们现在使用一种新的计算方法来定量分析HLA B细胞表位表面静电势的差异,并将其应用于解释HLA Bw4和Bw6的抗原性。
使用比较结构预测生成表达Bw4或Bw6表位(由第77至83位的序列基序定义)的HLA I类等位基因的蛋白质结构模型。通过求解泊松-玻尔兹曼方程计算包含Bw4/Bw6表位的三维空间中的静电势,并以成对、全对全的方式进行定量比较,以生成将具有相似静电性质的表位聚类的距离矩阵。
对HLA I类等位基因α1螺旋羧基末端(对应于氨基酸序列基序77至83)的表面静电势进行定量比较,根据Bw4或Bw6表位表达将HLA分子聚为3个主要组。值得注意的是,静电势的定量差异比Bw4/Bw6氨基酸序列基序能更好地反映已知的血清学反应模式。表位静电势的定量评估能够预测已知对抗体结合至关重要的氨基酸替代(HLA-B*07:02 R79G、R82L、G83R)的影响。
我们描述了一种定量分析HLA B细胞表位静电势差异的新方法。原理验证表明,该方法比单独的氨基酸序列数据能更好地评估HLA表位的抗原性,并且可能有助于预测HLA的免疫原性。