Dai Chaoqing, Wang Yueyue, Zhang Xiaofei
Opt Express. 2014 Dec 1;22(24):29862-7. doi: 10.1364/OE.22.029862.
The PT-symmetric and PT-antisymmetric Akhmediev breather (AB) and Kuznetsov-Ma (KM) soliton train solutions of a (2+1)-dimensional variable-coefficient coupled nonlinear Schrödinger equation in PT-symmetric coupled waveguides with gain and loss are derived via the Darboux transformation method. From these analytical solutions, we investigate the controllable behaviors of AB and KM soliton trains in a diffraction decreasing system with exponential profile. By adjusting the relation between the maximum Zm of effective propagation distance and the peak locations Zi of AB and KM soliton trains, we can control the restraint, maintenance and postpone excitations of AB and KM soliton trains.
通过达布变换方法,推导了具有增益和损耗的PT对称耦合波导中(2 + 1)维变系数耦合非线性薛定谔方程的PT对称和PT反对称艾哈迈德耶夫呼吸子(AB)以及库兹涅佐夫 - 马(KM)孤子列解。从这些解析解出发,我们研究了指数型衍射递减系统中AB和KM孤子列的可控行为。通过调整有效传播距离的最大值Zm与AB和KM孤子列的峰值位置Zi之间的关系,我们可以控制AB和KM孤子列的抑制、维持和延迟激发。