Suppr超能文献

用于高温热电应用的ZnO/氧化石墨烯分子杂化物的一步化学合成法。

One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications.

作者信息

Chen Dongsheng, Zhao Yan, Chen Yani, Wang Biao, Chen Haiyan, Zhou Jun, Liang Ziqi

机构信息

Department of Materials Science, Fudan University , Shanghai 200433, China.

出版信息

ACS Appl Mater Interfaces. 2015 Feb 11;7(5):3224-30. doi: 10.1021/am507882f. Epub 2015 Jan 30.

Abstract

ZnO as high-temperature thermoelectric material suffers from high lattice thermal conductivity and poor electrical conductivity. Al is often used to n-dope ZnO to form Zn1-xAlxO (AZO). Owing to very limited Al solubility (less than 2 atom %) in AZO, however, electrical conductivity is difficult to improve further. Moreover, such a low concentration of Al dopants can hardly reduce the thermal conductivity. Here, we propose slightly adding chemically reduced graphene oxides (rGOs) to AZO in various contents to modulate the carrier concentration and simultaneously optimize the electrical and thermal conductivities. Such nanocomposites with rGO embedded in AZO matrix are formed on the molecular level by one-step solution chemistry method. No obvious changes are found in crystalline structures of AZO after introducing rGOs. The rGO inclusions are shown to uniformly mix the AZO matrix that consists of compacted nanoparticles. In such AZO/rGO hybrids, Zn2+ is captured by the rGO, releasing extra electrons and thus increasing electron density, as confirmed by Hall measurements. The phonon-boundary scattering at the interface between AZO and rGO remarkably reduces the lattice thermal conductivity. Therefore, a respectable thermoelectric figure of merit of 0.28 at 900 °C is obtained in these nanocomposites at the rGO content of 1.5 wt %, which is 8 times larger than that of pure ZnO and 60% larger than that of alloyed AZO. This work demonstrates a facile wet chemistry route to produce nanostructured thermoelectric composites in which electrical conductivity can be greatly increased while largely lowering thermal conductivity, collectively enhancing the thermoelectric performance.

摘要

氧化锌作为高温热电材料,存在晶格热导率高和电导率差的问题。铝常被用于对氧化锌进行n型掺杂,以形成Zn1-xAlxO(AZO)。然而,由于铝在AZO中的溶解度非常有限(小于2原子%),电导率难以进一步提高。此外,如此低浓度的铝掺杂剂几乎无法降低热导率。在此,我们提出在AZO中以不同含量少量添加化学还原氧化石墨烯(rGO),以调节载流子浓度,同时优化电导率和热导率。通过一步溶液化学方法在分子水平上形成了rGO嵌入AZO基体的这种纳米复合材料。引入rGO后,AZO的晶体结构没有明显变化。结果表明,rGO夹杂物均匀地混合了由压实纳米颗粒组成的AZO基体。如霍尔测量所证实的,在这种AZO/rGO杂化物中,Zn2+被rGO捕获,释放出额外的电子,从而增加了电子密度。AZO与rGO界面处的声子边界散射显著降低了晶格热导率。因此,在这些纳米复合材料中,当rGO含量为1.5 wt%时,在900 °C下获得了可观的热电优值0.28,这比纯氧化锌大8倍,比合金化的AZO大60%。这项工作展示了一种简便的湿化学路线,用于制备纳米结构的热电复合材料,其中电导率可以大幅提高,同时热导率大幅降低,共同提高了热电性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验