Suppr超能文献

In vitro reconstitution of functional yeast U2 snRNPs.

作者信息

McPheeters D S, Fabrizio P, Abelson J

机构信息

Division of Biology, California Institute of Technology, Pasadena 91125.

出版信息

Genes Dev. 1989 Dec;3(12B):2124-36. doi: 10.1101/gad.3.12b.2124.

Abstract

A system for the functional reconstitution of yeast U2 snRNPs using synthetic U2 RNAs is described. We use oligonucleotide-directed RNase H cleavage to specifically deplete yeast extracts of their endogenous full-length U2 snRNA and consequently inactivate pre-mRNA splicing activity. The subsequent addition of synthetic yeast U2 RNAs, derived by in vitro transcription (T7U2 RNAs), to these oligonucleotide-treated extracts efficiently reconstitutes their ability to splice pre-mRNA. The use of deletion derivatives of the T7U2 RNA has demonstrated that the region downstream from the conserved Sm-binding site sequence in the yeast U2 RNA is not absolutely required for pre-mRNA splicing activity in vitro. Furthermore, we found that both human and rat U2 RNAs can function in yeast extracts. We also show that point mutations in the yeast U2 RNA can be analyzed using the in vitro reconstitution system. Allele-specific suppression of mutations in pre-mRNA branch site sequence is observed when the appropriate compensatory mutations in the branch site recognition region of the T7U2 RNA are introduced. Finally, we present a model for the interaction of the U2 and U6 snRNAs during pre-mRNA splicing.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验