Suppr超能文献

一种用于像素分解的有效方法,以提高来自MODIS热红外波段数据的地表温度图像的空间分辨率。

An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

作者信息

Wang Fei, Qin Zhihao, Li Wenjuan, Song Caiying, Karnieli Arnon, Zhao Shuhe

机构信息

School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China.

Institute of Agro-Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

出版信息

Sensors (Basel). 2014 Dec 25;15(1):304-30. doi: 10.3390/s150100304.

Abstract

Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2.7 K for entire image. Comparison with the evaluation DisTrad (E-DisTrad) and re-sampling methods for pixel decomposition also indicate that our DSPD has the lowest RMSE in all cases, including urban region, water bodies, and natural terrain. The obvious increase in spatial resolution remarkably uplifts the capability of the coarse MODIS LST images in highlighting the details of LST variation. Therefore it can be concluded that, in spite of complicated procedures, the proposed DSPD approach provides an alternative to improve the spatial resolution of MODIS LST image hence expand its applicability to the real world.

摘要

从中等分辨率成像光谱仪(MODIS)的热红外(TIR)波段数据中获取的陆地表面温度(LST)图像,其空间分辨率远低于MODIS的可见光和近红外(VNIR)波段数据。MODIS LST图像的粗像素尺度(天底处为1000米)限制了其在许多需要高空间分辨率的研究中的应用能力,相比之下,MODIS VNIR波段数据的像素尺度为250 - 500米。在本文中,我们打算开发一种有效的像素分解方法,以利用VNIR波段数据辅助提高MODIS LST图像的空间分辨率。该方法的独特之处在于,将MODIS LST图像中的父像素分解为结果图像中的子像素后,保持其热辐射不变。分解过程中有两个重要步骤:初始温度估计和最终温度确定。因此,该方法可称为双步像素分解(DSPD)。这两个步骤都涉及一系列程序以获得分解后的LST图像的最终结果,包括地表模式分类、建立LST与植被指数(NDVI)和建筑指数(NDBI)归一化差异的变化关系、通过普朗克方程将LST转换为热辐射以及计算结果图像子像素的权重。由于与MODIS搭载在同一平台(Terra)上用于地球观测的先进星载热发射和反射辐射仪(ASTER)具有比MODIS数据高得多的空间分辨率,因此在该研究中进行了一项实验来验证我们的像素分解方法的准确性和效率。将ASTER LST图像用作参考与分解后的LST图像进行比较。结果表明,分解后的LST图像的空间分布与ASTER LST图像非常相似,整个图像的均方根误差(RMSE)为2.7K。与评估DisTrad(E - DisTrad)和用于像素分解的重采样方法的比较也表明,我们的DSPD在所有情况下,包括城市地区、水体和自然地形,RMSE最低。空间分辨率的显著提高明显提升了粗糙的MODIS LST图像突出LST变化细节的能力。因此可以得出结论,尽管程序复杂,但所提出的DSPD方法为提高MODIS LST图像的空间分辨率提供了一种替代方案,从而扩展了其在现实世界中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b753/4327020/609e703617e3/sensors-15-00304f9.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验