Suppr超能文献

新生 Pten 敲除神经元的过度活跃源于兴奋性突触驱动增加。

Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

机构信息

Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756.

Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756

出版信息

J Neurosci. 2015 Jan 21;35(3):943-59. doi: 10.1523/JNEUROSCI.3144-14.2015.

Abstract

Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons.

摘要

发育中的神经元必须调节形态、内在兴奋性和突触发生,以形成神经回路。当这些过程出现异常时,可能会导致包括自闭症谱系障碍(ASD)或癫痫在内的疾病。一些患有 ASD 和癫痫的患者的 Pten 磷酸酶发生突变,这表明其突变部分通过增加神经元活性来破坏神经功能。支持这一观点的是,在小鼠中敲除神经元中的 Pten 会导致大头畸形、类似于 ASD 的行为变化和癫痫发作。然而,Pten 耗竭后兴奋性增强的机制尚不清楚。先前的研究分别表明,Pten 耗竭的神经元可以引发癫痫、接收增强的兴奋性突触输入以及具有异常的树突。因此,我们使用电生理学、钙成像、形态分析和建模来测试以下假设:由于兴奋性突触发生增加,发育中的 Pten 耗竭神经元会变得过度活跃。通过在新生鼠齿状回颗粒神经元中共同注射逆转录病毒来实现这一点,要么“出生时间”,要么出生时间和敲除 Pten。我们发现,尽管 Pten 敲除神经元的肥大迅速发生,但它们在体内更活跃。Pten 敲除神经元在更超极化的膜电位下放电,显示出更高的峰值尖峰率,并且对去极化的突触输入更敏感。Pten 敲除神经元的敏感性增加部分归因于位于靠近胞体的更近位置的突触密度增加。我们确定,增加的突触驱动足以使肥大的 Pten 敲除神经元超过其改变的动作电位阈值。因此,我们的工作为 Pten 耗竭神经元活性增加提供了一种发育机制。

相似文献

1
Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.
J Neurosci. 2015 Jan 21;35(3):943-59. doi: 10.1523/JNEUROSCI.3144-14.2015.
2
Pten knockdown in vivo increases excitatory drive onto dentate granule cells.
J Neurosci. 2011 Mar 16;31(11):4345-54. doi: 10.1523/JNEUROSCI.0061-11.2011.
3
Pten loss results in inappropriate excitatory connectivity.
Mol Psychiatry. 2019 Nov;24(11):1627-1640. doi: 10.1038/s41380-019-0412-6. Epub 2019 Apr 9.
5
Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.
Epilepsia. 2010 Jan;51(1):136-45. doi: 10.1111/j.1528-1167.2009.02202.x. Epub 2009 Aug 13.
6
mTORC2 Inhibition Improves Morphological Effects of PTEN Loss, But Does Not Correct Synaptic Dysfunction or Prevent Seizures.
J Neurosci. 2023 Feb 1;43(5):827-845. doi: 10.1523/JNEUROSCI.1354-22.2022. Epub 2022 Dec 16.
7
PTEN deletion increases hippocampal granule cell excitability in male and female mice.
Neurobiol Dis. 2017 Dec;108:339-351. doi: 10.1016/j.nbd.2017.08.014. Epub 2017 Sep 21.
8
S6k1 is not required for Pten-deficient neuronal hypertrophy.
Brain Res. 2006 Jul 19;1100(1):32-41. doi: 10.1016/j.brainres.2006.05.013. Epub 2006 Jun 13.
9
Activity-dependent dendritic elaboration requires Pten.
Neurobiol Dis. 2020 Feb;134:104703. doi: 10.1016/j.nbd.2019.104703. Epub 2019 Dec 12.
10
PTEN Loss Increases the Connectivity of Fast Synaptic Motifs and Functional Connectivity in a Developing Hippocampal Network.
J Neurosci. 2017 Sep 6;37(36):8595-8611. doi: 10.1523/JNEUROSCI.0878-17.2017. Epub 2017 Jul 27.

引用本文的文献

1
Research progress in glioma-related epilepsy (Review).
Biomed Rep. 2025 Aug 19;23(4):167. doi: 10.3892/br.2025.2045. eCollection 2025 Oct.
2
PTEN regulates starburst amacrine cell dendrite morphology during development.
bioRxiv. 2025 May 8:2025.05.08.652956. doi: 10.1101/2025.05.08.652956.
3
PTEN in somatostatin neurons regulates fear and anxiety and is required for inhibitory synaptic connectivity within central amygdala.
Front Cell Neurosci. 2025 Jun 26;19:1597131. doi: 10.3389/fncel.2025.1597131. eCollection 2025.
5
Mechanisms of brain overgrowth in autism spectrum disorder with macrocephaly.
Front Neurosci. 2025 Jun 6;19:1586550. doi: 10.3389/fnins.2025.1586550. eCollection 2025.
6
Developmental mechanisms underlying pediatric epilepsy.
Front Neurol. 2025 Jun 3;16:1586947. doi: 10.3389/fneur.2025.1586947. eCollection 2025.
8
Seizures in brain tumors: pathogenesis, risk factors and management (Review).
Int J Mol Med. 2025 May;55(5). doi: 10.3892/ijmm.2025.5523. Epub 2025 Mar 21.
9
A Massively Parallel CRISPR-Based Screening Platform for Modifiers of Neuronal Activity.
bioRxiv. 2025 Feb 10:2024.02.28.582546. doi: 10.1101/2024.02.28.582546.
10
Genetically encoded biosensor for fluorescence lifetime imaging of PTEN dynamics in the intact brain.
Nat Methods. 2025 Apr;22(4):764-777. doi: 10.1038/s41592-025-02610-9. Epub 2025 Feb 20.

本文引用的文献

1
Fatty acids increase neuronal hypertrophy of Pten knockdown neurons.
Front Mol Neurosci. 2014 Apr 23;7:30. doi: 10.3389/fnmol.2014.00030. eCollection 2014.
2
Deletion of PTEN produces autism-like behavioral deficits and alterations in synaptic proteins.
Front Mol Neurosci. 2014 Apr 16;7:27. doi: 10.3389/fnmol.2014.00027. eCollection 2014.
3
5
Ultrasensitive fluorescent proteins for imaging neuronal activity.
Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.
6
Differential role of PTEN phosphatase in chemotactic growth cone guidance.
J Biol Chem. 2013 Jul 19;288(29):20837-20842. doi: 10.1074/jbc.C113.487066. Epub 2013 Jun 17.
7
Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly.
Eur J Hum Genet. 2014 Feb;22(2):273-6. doi: 10.1038/ejhg.2013.114. Epub 2013 May 22.
8
Dysregulation of synaptic plasticity precedes appearance of morphological defects in a Pten conditional knockout mouse model of autism.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4738-43. doi: 10.1073/pnas.1222803110. Epub 2013 Mar 4.
9
Macrocephaly as a clinical indicator of genetic subtypes in autism.
Autism Res. 2013 Feb;6(1):51-6. doi: 10.1002/aur.1266. Epub 2013 Jan 29.
10
Molecular profiling of activated neurons by phosphorylated ribosome capture.
Cell. 2012 Nov 21;151(5):1126-37. doi: 10.1016/j.cell.2012.10.039.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验