Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4738-43. doi: 10.1073/pnas.1222803110. Epub 2013 Mar 4.
The phosphoinositide signaling system is a crucial regulator of neural development, cell survival, and plasticity. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates phosphatidylinositol 3-kinase signaling and downstream targets. Nse-Cre Pten conditional knockout mice, in which Pten is ablated in granule cells of the dentate gyrus and pyramidal neurons of the hippocampal CA3, but not CA1, recapitulate many of the symptoms of humans with inactivating PTEN mutations, including progressive hypertrophy of the dentate gyrus and deficits in hippocampus-based social and cognitive behaviors. However, the impact of Pten loss on activity-dependent synaptic plasticity in this clinically relevant mouse model of Pten inactivation remains unclear. Here, we show that two phosphatidylinositol 3-kinase- and protein synthesis-dependent forms of synaptic plasticity, theta burst-induced long-term potentiation and metabotropic glutamate receptor (mGluR)-dependent long-term depression, are dysregulated at medial perforant path-to-dentate gyrus synapses of young Nse-Cre Pten conditional knockout mice before the onset of visible morphological abnormalities. In contrast, long-term potentiation and mGluR-dependent long-term depression are normal at CA3-CA1 pyramidal cell synapses at this age. Our results reveal that deletion of Pten in dentate granule cells dysregulates synaptic plasticity, a defect that may underlie abnormal social and cognitive behaviors observed in humans with Pten inactivating mutations and potentially other autism spectrum disorders.
磷酸肌醇信号系统是神经发育、细胞存活和可塑性的关键调节因子。磷酸酶和张力蛋白同源物缺失于第 10 号染色体(PTEN)负调节磷脂酰肌醇 3-激酶信号及其下游靶标。在齿状回颗粒细胞和海马 CA3 区的锥体神经元中缺失 Pten 的 Nse-Cre Pten 条件性敲除小鼠,重现了许多具有失活 PTEN 突变的人类的症状,包括齿状回进行性肥大和基于海马的社会和认知行为缺陷。然而,在这种临床上相关的 Pten 失活小鼠模型中,Pten 缺失对活性依赖性突触可塑性的影响仍不清楚。在这里,我们表明,两种磷脂酰肌醇 3-激酶和蛋白质合成依赖性的突触可塑性形式,即θ爆发诱导的长时程增强和代谢型谷氨酸受体(mGluR)依赖性长时程抑制,在年轻的 Nse-Cre Pten 条件性敲除小鼠中,在可见的形态异常出现之前,内侧穿通路径到齿状回突触的功能失调。相比之下,在这个年龄,CA3-CA1 锥体神经元突触的长时程增强和 mGluR 依赖性长时程抑制是正常的。我们的结果表明,齿状回颗粒细胞中 Pten 的缺失会扰乱突触可塑性,这种缺陷可能是人类中具有失活 PTEN 突变和潜在其他自闭症谱系障碍的异常社会和认知行为的基础。