Apostolova Liana G, Hwang Kristy S, Avila David, Elashoff David, Kohannim Omid, Teng Edmond, Sokolow Sophie, Jack Clifford R, Jagust William J, Shaw Leslie, Trojanowski John Q, Weiner Michael W, Thompson Paul M
From the Departments of Neurology (L.G.A., K.S.H., D.A., O.K., E.T., P.M.T.), Medicine Statistics Core (D.E.), and School of Nursing (S.S.), David Geffen School of Medicine at University of California, Los Angeles; Institute for Neuroinformatics (P.M.T.), Keck School of Medicine, University of Southern California, Los Angeles; Veterans Affairs Greater Los Angeles Healthcare System (E.T.); Department of Diagnostic Radiology (C.R.J.), Mayo Clinic, Rochester, MN; Department of Public Health and Neuroscience (W.J.J.), University of California, Berkeley; Department of Pathology and Laboratory Medicine (L.S., J.Q.T.), University of Pennsylvania School of Medicine, Philadelphia; Department of Radiology (M.W.W.), University of California, San Francisco; and Department of Veterans Affairs Medical Center (M.W.W.), San Francisco, CA.
Neurology. 2015 Feb 17;84(7):729-37. doi: 10.1212/WNL.0000000000001231. Epub 2015 Jan 21.
The goal of this study was to identify a clinical biomarker signature of brain amyloidosis in the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) mild cognitive impairment (MCI) cohort.
We developed a multimodal biomarker classifier for predicting brain amyloidosis using cognitive, imaging, and peripheral blood protein ADNI1 MCI data. We used CSF β-amyloid 1-42 (Aβ42) ≤ 192 pg/mL as proxy measure for Pittsburgh compound B (PiB)-PET standard uptake value ratio ≥ 1.5. We trained our classifier in the subcohort with CSF Aβ42 but no PiB-PET data and tested its performance in the subcohort with PiB-PET but no CSF Aβ42 data. We also examined the utility of our biomarker signature for predicting disease progression from MCI to Alzheimer dementia.
The CSF training classifier selected Mini-Mental State Examination, Trails B, Auditory Verbal Learning Test delayed recall, education, APOE genotype, interleukin 6 receptor, clusterin, and ApoE protein, and achieved leave-one-out accuracy of 85% (area under the curve [AUC] = 0.8). The PiB testing classifier achieved an AUC of 0.72, and when classifier self-tuning was allowed, AUC = 0.74. The 36-month disease-progression classifier achieved AUC = 0.75 and accuracy = 71%.
Automated classifiers based on cognitive and peripheral blood protein variables can identify the presence of brain amyloidosis with a modest level of accuracy. Such methods could have implications for clinical trial design and enrollment in the near future.
This study provides Class II evidence that a classification algorithm based on cognitive, imaging, and peripheral blood protein measures identifies patients with brain amyloid on PiB-PET with moderate accuracy (sensitivity 68%, specificity 78%).
本研究的目的是在阿尔茨海默病神经影像学倡议1(ADNI1)轻度认知障碍(MCI)队列中识别脑淀粉样变性的临床生物标志物特征。
我们开发了一种多模态生物标志物分类器,用于使用认知、影像学和外周血蛋白ADNI1 MCI数据预测脑淀粉样变性。我们使用脑脊液β-淀粉样蛋白1-42(Aβ42)≤192 pg/mL作为匹兹堡化合物B(PiB)-PET标准摄取值比率≥1.5的替代指标。我们在有脑脊液Aβ42但无PiB-PET数据的亚队列中训练分类器,并在有PiB-PET但无脑脊液Aβ42数据的亚队列中测试其性能。我们还研究了我们生物标志物特征在预测从MCI到阿尔茨海默病痴呆疾病进展方面的效用。
脑脊液训练分类器选择了简易精神状态检查表、连线测验B、听觉词语学习测验延迟回忆、受教育程度、载脂蛋白E(APOE)基因型、白细胞介素6受体、簇集蛋白和载脂蛋白E蛋白,留一法准确率达到85%(曲线下面积[AUC]=0.8)。PiB测试分类器的AUC为0.72,当允许分类器自调整时,AUC=0.74。36个月疾病进展分类器的AUC=0.75,准确率=71%。
基于认知和外周血蛋白变量的自动化分类器能够以一定程度的准确性识别脑淀粉样变性的存在。此类方法可能在不久的将来对临床试验设计和入组产生影响。
本研究提供了二级证据,即基于认知、影像学和外周血蛋白测量的分类算法能够以中等准确性(敏感性68%,特异性78%)识别PiB-PET上有脑淀粉样蛋白的患者。