From the Department of Radiology, Division of Neuroradiology, Alzheimer Disease Imaging Research Laboratory (C.O.L., J.R.P.), and Neurocognitive Disorders Program, Departments of Psychiatry and Medicine (P.M.D.), Duke University Medical Center, DUMC-Box 3808, Durham, NC 27710-3808; and Duke Institute for Brain Sciences (P.M.D.) and Department of Electrical and Computer Engineering, Department of Computer Science, Department of Biostatistics and Bioinformatics (L.Z., M.A.M.), Duke University, Durham, NC.
Radiology. 2023 Oct;309(1):e222441. doi: 10.1148/radiol.222441.
Background PET can be used for amyloid-tau-neurodegeneration (ATN) classification in Alzheimer disease, but incurs considerable cost and exposure to ionizing radiation. MRI currently has limited use in characterizing ATN status. Deep learning techniques can detect complex patterns in MRI data and have potential for noninvasive characterization of ATN status. Purpose To use deep learning to predict PET-determined ATN biomarker status using MRI and readily available diagnostic data. Materials and Methods MRI and PET data were retrospectively collected from the Alzheimer's Disease Imaging Initiative. PET scans were paired with MRI scans acquired within 30 days, from August 2005 to September 2020. Pairs were randomly split into subsets as follows: 70% for training, 10% for validation, and 20% for final testing. A bimodal Gaussian mixture model was used to threshold PET scans into positive and negative labels. MRI data were fed into a convolutional neural network to generate imaging features. These features were combined in a logistic regression model with patient demographics, gene status, cognitive scores, hippocampal volumes, and clinical diagnoses to classify each ATN biomarker component as positive or negative. Area under the receiver operating characteristic curve (AUC) analysis was used for model evaluation. Feature importance was derived from model coefficients and gradients. Results There were 2099 amyloid (mean patient age, 75 years ± 10 [SD]; 1110 male), 557 tau (mean patient age, 75 years ± 7; 280 male), and 2768 FDG PET (mean patient age, 75 years ± 7; 1645 male) and MRI pairs. Model AUCs for the test set were as follows: amyloid, 0.79 (95% CI: 0.74, 0.83); tau, 0.73 (95% CI: 0.58, 0.86); and neurodegeneration, 0.86 (95% CI: 0.83, 0.89). Within the networks, high gradients were present in key temporal, parietal, frontal, and occipital cortical regions. Model coefficients for cognitive scores, hippocampal volumes, and status were highest. Conclusion A deep learning algorithm predicted each component of PET-determined ATN status with acceptable to excellent efficacy using MRI and other available diagnostic data. © RSNA, 2023
背景 正电子发射断层扫描(PET)可用于阿尔茨海默病的淀粉样蛋白-tau-神经退行性变(ATN)分类,但费用高昂且存在放射性电离辐射暴露。磁共振成像(MRI)目前在表征 ATN 状态方面的应用有限。深度学习技术可检测 MRI 数据中的复杂模式,具有实现 ATN 状态无创特征描述的潜力。 目的 利用深度学习技术,通过 MRI 和易于获得的诊断数据预测 PET 确定的 ATN 生物标志物状态。 材料与方法 回顾性收集了阿尔茨海默病影像倡议的 MRI 和 PET 数据。PET 扫描与 2005 年 8 月至 2020 年 9 月 30 天内采集的 MRI 扫描配对。对这些配对数据进行随机分组,70%用于训练,10%用于验证,20%用于最终测试。双模态高斯混合模型用于将 PET 扫描阈值为阳性和阴性标签。将 MRI 数据输入卷积神经网络以生成成像特征。这些特征与患者人口统计学数据、基因状态、认知评分、海马体积和临床诊断一起输入逻辑回归模型,以将每个 ATN 生物标志物成分分类为阳性或阴性。采用受试者工作特征曲线下面积(AUC)分析进行模型评估。从模型系数和梯度中得出特征重要性。 结果 共纳入 2099 例淀粉样蛋白(平均患者年龄,75 岁±10[标准差];1110 例男性)、557 例 tau(平均患者年龄,75 岁±7;280 例男性)和 2768 例氟脱氧葡萄糖正电子发射断层扫描(平均患者年龄,75 岁±7;1645 例男性)与 MRI 配对。测试集中模型的 AUC 结果如下:淀粉样蛋白为 0.79(95%CI:0.74,0.83);tau 为 0.73(95%CI:0.58,0.86);神经退行性变为 0.86(95%CI:0.83,0.89)。在网络中,关键的颞叶、顶叶、额叶和枕叶皮质区域的梯度较高。认知评分、海马体积和基因状态的模型系数最高。 结论 利用深度学习算法,通过 MRI 和其他可用的诊断数据,可对 PET 确定的 ATN 状态的各个组成部分进行预测,效果可接受或优异。