Suppr超能文献

A subsequence-specific DNA-binding domain resides in the 13 kDa amino terminus of the bacteriophage Mu transposase protein.

作者信息

Tolias P P, DuBow M S

机构信息

Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.

出版信息

J Mol Recognit. 1989 Apr;1(4):172-8. doi: 10.1002/jmr.300010405.

Abstract

We have previously reported that the 13 kDa amino terminus of the 70 kDa bacteriophage D108 transposase protein (A gene product) contains a two-component, sequence-specific DNA-binding domain which specifically binds to the related bacteriophage Mu's right end (attR) in vitro. To extend these studies, we examined the ability of the 13 kDa amino terminus of the Mu transposase protein to bind specifically to Mu attR in crude extracts. Here we report that the Mu transposase protein also contains a Mu attR specific DNA-binding domain, located in a putative alpha-helix-turn-alpha-helix region, in the amino terminal 13 kDa portion of the 70 kDa transposase protein as part of a 23 kDa fusion protein with beta-lactamase. We purified for this attR-specific DNA-binding activity and ultimately obtained a single polypeptide of the predicted molecular weight for the A'--'bla fusion protein. We found that the pure protein bound to the Mu attR site in a different manner compared with the entire Mu transposase protein as determined by DNase I-footprinting. Our results may suggest the presence of a potential primordial DNA-binding site (5'-PuCGAAA-3') located several times within attR, at the ends of Mu and D108 DNA, and at the extremities of other prokaryotic class II elements that catalyze 5 base pair duplications at the site of element insertion. The dissection of the functional domains of the related phage Mu and D108 transposase proteins will provide clues to the mechanisms and evolution of DNA transposition as a mode of mobile genetic element propagation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验