Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan (Drs Ookubo, Yoshimura, Yamada, and Kanai); Department of Psychiatry, Minakuchi Hospital, Shiga, Japan (Dr Ookubo); Department of Psychology and Psychiatry, Human Sciences, Kinjo Gakuin University, Aich, Japan (Dr Sadamatsu); Department of Thyroid and Endocrinology, Fukushima Medical University, Fukushima, Japan (Dr Suzuki); Department of Psychiatry, Showa University School of Medicine, Tokyo, Japan (Dr Kato); Department of Molecular Genetics in Medicine, Shiga University of Medical Science, Shiga, Japan (Dr. Kojima); Department of Psychiatry, Japanese Red Cross Society Nagahama Hospital, Shiga, Japan (Dr. Kanai).
Int J Neuropsychopharmacol. 2015 Jan 22;18(7):pyv004. doi: 10.1093/ijnp/pyv004.
Thyroid hormone receptors are divided into 2 functional types: TRα and TRβ. Thyroid hormone receptors play pivotal roles in the developing brain, and disruption of thyroid hormone receptors can produce permanent behavioral abnormality in animal models and humans.
Here we examined behavioralchanges, regional monoamine metabolism, and expression of epigenetic modulatory proteins, including acetylated histone H3 and histone deacetylase, in the developing brain of TRα-disrupted (TRα (0/0) ) and TRβ-deficient (TRβ (-/-) ) mice. Tissue concentrations of dopamine, serotonin (5-hydroxytryptamine) and their metabolites in the mesocorticolimbic pathway were measured.
TRβ (-/-) mice, a model of attention-deficit/hyperactivity disorder, showed significantly high exploratory activity and reduced habituation, whereas TRα (0/0) mice showed normal exploratory activity. The biochemical profiles of dopamine and 5-hydroxytryptamine showed significantly low dopamine metabolic rates in the caudate putamen and nucleus accumbens and overall low 5-hydroxytryptamine metabolic rates in TRβ (-/-) mice, but not in TRα (0/0) mice. Furthermore, the expression of acetylated histone H3 was low in the dorsal raphe of TRβ (-/-) mice, and histone deacetylase 2/3 proteins were widely increased in the mesolimbic system.
These findings suggest that TRβ deficiency causes dysfunction of the monoaminergic system, accompanied by epigenetic disruption during the brain maturation process.
甲状腺激素受体分为两种功能类型:TRα 和 TRβ。甲状腺激素受体在大脑发育中起着关键作用,甲状腺激素受体的破坏会在动物模型和人类中产生永久性的行为异常。
在这里,我们研究了 TRα 缺失(TRα(0/0))和 TRβ 缺乏(TRβ(-/-))小鼠发育中大脑的行为变化、区域单胺代谢以及表观遗传调节蛋白的表达,包括乙酰化组蛋白 H3 和组蛋白去乙酰化酶。测量了中脑边缘多巴胺能通路中单胺递质多巴胺、5-羟色胺(5-羟色胺)及其代谢物的组织浓度。
注意力缺陷多动障碍(ADHD)模型 TRβ(-/-)小鼠表现出明显的高探索活性和减少习惯化,而 TRα(0/0)小鼠表现出正常的探索活性。多巴胺和 5-羟色胺的生化特征显示,TRβ(-/-)小鼠纹状体和伏隔核中的多巴胺代谢率显著降低,而 TRα(0/0)小鼠则没有。此外,TRβ(-/-)小鼠背缝核中的乙酰化组蛋白 H3 表达水平较低,中脑边缘系统中的组蛋白去乙酰化酶 2/3 蛋白广泛增加。
这些发现表明,TRβ 缺乏导致单胺能系统功能障碍,并伴有大脑成熟过程中的表观遗传破坏。