Muthard Ryan W, Welsh John D, Brass Lawrence F, Diamond Scott L
From the Department of Chemical and Biomolecular Engineering (R.W.M., J.D.W., S.L.D.) and Department of Medicine (J.D.W., L.F.B.), University of Pennsylvania, Philadelphia.
Arterioscler Thromb Vasc Biol. 2015 Mar;35(3):645-54. doi: 10.1161/ATVBAHA.114.305054. Epub 2015 Jan 22.
Biological and physical factors interact to modulate blood response in a wounded vessel, resulting in a hemostatic clot or an occlusive thrombus. Flow and pressure differential (ΔP) across the wound from the lumen to the extravascular compartment may impact hemostasis and the observed core/shell architecture. We examined physical and biological factors responsible for regulating thrombin-mediated clot growth.
Using factor XIIa-inhibited human whole blood perfused in a microfluidic device over collagen/tissue factor at controlled wall shear rate and ΔP, we found thrombin to be highly localized in the P-selectin(+) core of hemostatic clots. Increasing ΔP from 9 to 29 mm Hg (wall shear rate=400 s(-1)) reduced P-selectin(+) core size and total clot size because of enhanced extravasation of thrombin. Blockade of fibrin polymerization with 5 mmol/L Gly-Pro-Arg-Pro dysregulated hemostasis by enhancing both P-selectin(+) core size and clot size at 400 s(-1) (20 mm Hg). For whole-blood flow (no Gly-Pro-Arg-Pro), the thickness of the P-selectin-negative shell was reduced under arterial conditions (2000 s(-1), 20 mm Hg). Consistent with the antithrombin-1 activity of fibrin implicated with Gly-Pro-Arg-Pro, anti-γ'-fibrinogen antibody enhanced core-localized thrombin, core size, and overall clot size, especially at venous (100 s(-1)) but not arterial wall shear rates (2000 s(-1)). Pathological shear (15 000 s(-1)) and Gly-Pro-Arg-Pro synergized to exacerbate clot growth.
Hemostatic clotting was dependent on core-localized thrombin that (1) triggered platelet P-selectin display and (2) was highly regulated by fibrin and the transclot ΔP. Also, γ'-fibrinogen had a role in venous but not arterial conditions.
生物和物理因素相互作用,调节受伤血管中的血液反应,从而形成止血凝块或闭塞性血栓。从管腔到血管外间隙的伤口处的血流和压力差(ΔP)可能会影响止血过程以及观察到的凝块核心/外壳结构。我们研究了负责调节凝血酶介导的凝块生长的物理和生物因素。
在微流控装置中,以可控的壁面剪切速率和ΔP,将经因子XIIa抑制的人全血灌注到胶原蛋白/组织因子上,我们发现凝血酶高度定位于止血凝块的P-选择素阳性核心中。将ΔP从9 mmHg增加到29 mmHg(壁面剪切速率 = 400 s⁻¹)会减小P-选择素阳性核心的大小和凝块的总体大小,这是由于凝血酶的外渗增强所致。用5 mmol/L的甘氨酰-脯氨酰-精氨酰-脯氨酸阻断纤维蛋白聚合,通过在400 s⁻¹(20 mmHg)时增加P-选择素阳性核心的大小和凝块大小,使止血失调。对于全血流(无甘氨酰-脯氨酰-精氨酰-脯氨酸),在动脉条件下(2000 s⁻¹,20 mmHg),P-选择素阴性外壳的厚度会减小。与甘氨酰-脯氨酰-精氨酰-脯氨酸所涉及的纤维蛋白的抗凝血酶-1活性一致,抗γ'-纤维蛋白原抗体增强了核心部位的凝血酶、核心大小和凝块的总体大小,尤其是在静脉壁面剪切速率(100 s⁻¹)时,但在动脉壁面剪切速率(2000 s⁻¹)时则不然。病理性剪切(15000 s⁻¹)和甘氨酰-脯氨酰-精氨酰-脯氨酸协同作用会加剧凝块生长。
止血凝血依赖于定位于核心的凝血酶,该凝血酶(1)触发血小板P-选择素的表达,(2)受纤维蛋白和跨凝块ΔP的高度调节。此外,γ'-纤维蛋白原在静脉条件下起作用,而在动脉条件下则不然。