Kéri Mónika, Peng Chen, Shi Xiangyang, Bányai István
Department of Colloid and Environmental Chemistry, University of Debrecen , Debrecen, Hungary.
J Phys Chem B. 2015 Feb 19;119(7):3312-9. doi: 10.1021/acs.jpcb.5b00272. Epub 2015 Feb 4.
High resolution NMR spectroscopy, NMR diffusiometry, and NMR cryoporometry have been used to investigate aqueous solution (D2O) of PAMAM_G5.NH2-(Au)(25-100) and PAMAM_G5.NH2-(H2O)1000-(H2O)4000 systems. In the case of dendrimer entrapped gold nanoparticles, the detailed analysis of high resolution NMR spectra has shown that no precursor complex formation happens under the circumstances applied for reduction. Further PGSE results verify that gold nanoparticles of 1.9-2.6 nm size are entrapped in the outermost part of the dendrimers and probably more than one dendrimer molecule takes part in the stabilization process. This system looks like a transition state between dendrimer encapsulated nanoparticles (DENs) and dendrimer stabilized nanoparticles (DSNs), and we deal with it in details for what this means. NMR cryoporometry experiments were performed to detect the encapsulation of water molecules. The results show that, in the swelling PAMAM_G5.NH2 dendrimers, by adding water step by step, there are specific cavities for water with diameters of 3.6 and 5.2 nm. These cavities have a penetrable wall for water molecules and probably exist very close to the terminal groups. The permeability of the cavities is increasing with the increase of the water content. In dilute solution, the formation of nanoparticles is determined by the ratio of the rate of nucleation and aggregation and the latter is affected by the PAMAM_G5.NH2.
高分辨率核磁共振光谱、核磁共振扩散测量法和核磁共振低温孔率测定法已被用于研究PAMAM_G5.NH2-(Au)(25 - 100)和PAMAM_G5.NH2-(H2O)1000-(H2O)4000体系的水溶液(D2O)。对于包裹有金纳米颗粒的树枝状大分子,高分辨率核磁共振光谱的详细分析表明,在用于还原的条件下不会形成前体络合物。进一步的脉冲梯度自旋回波(PGSE)结果证实,尺寸为1.9 - 2.6 nm的金纳米颗粒被包裹在树枝状大分子的最外层,并且可能有不止一个树枝状大分子分子参与稳定过程。该体系看起来像是树枝状大分子包裹的纳米颗粒(DENs)和树枝状大分子稳定的纳米颗粒(DSNs)之间的过渡态,我们将详细探讨其意义所在。进行了核磁共振低温孔率测定实验以检测水分子的包裹情况。结果表明,在膨胀的PAMAM_G5.NH2树枝状大分子中,通过逐步加水,存在直径为3.6和5.2 nm的特定水腔。这些腔体对水分子具有可渗透的壁,并且可能非常靠近末端基团存在。腔体的渗透性随着含水量的增加而增加。在稀溶液中,纳米颗粒的形成由成核速率与聚集速率的比值决定,而后者受PAMAM_G5.NH2的影响。