Schmeissner Roman, Roslund Jonathan, Fabre Claude, Treps Nicolas
Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Paris, France.
Phys Rev Lett. 2014 Dec 31;113(26):263906. doi: 10.1103/PhysRevLett.113.263906.
Cavity-based noise detection schemes are combined with ultrafast pulse shaping as a means to diagnose the spectral correlations of both the amplitude and phase noise of an ultrafast frequency comb. The comb is divided into ten spectral regions, and the distribution of noise as well as the correlations between all pairs of spectral regions are measured against the quantum limit. These correlations are then represented in the form of classical noise matrices, which furnish a complete description of the underlying comb dynamics. Their eigendecomposition reveals a set of theoretically predicted, decoupled noise modes that govern the dynamics of the comb. These matrices also contain the information necessary to deduce macroscopic noise properties of the comb.
基于腔的噪声检测方案与超快脉冲整形相结合,作为诊断超快频率梳的幅度噪声和相位噪声的频谱相关性的一种手段。该频率梳被划分为十个光谱区域,并针对量子极限测量噪声分布以及所有光谱区域对之间的相关性。然后,这些相关性以经典噪声矩阵的形式表示,它提供了对潜在频率梳动力学的完整描述。其特征分解揭示了一组理论预测的、解耦的噪声模式,这些模式控制着频率梳的动力学。这些矩阵还包含推断频率梳宏观噪声特性所需的信息。