Suppr超能文献

利用高通量表达数据构建miRNA-mRNA-蛋白质调控网络

The assembly of miRNA-mRNA-protein regulatory networks using high-throughput expression data.

作者信息

Chu Tianjiao, Mouillet Jean-Francois, Hood Brian L, Conrads Thomas P, Sadovsky Yoel

机构信息

Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213 USA, Women's Health Integrated Research Center at Inova Health System, Annandale, VA, 22003 USA and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15213 USA.

Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213 USA, Women's Health Integrated Research Center at Inova Health System, Annandale, VA, 22003 USA and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15213 USA Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, 15213 USA, Women's Health Integrated Research Center at Inova Health System, Annandale, VA, 22003 USA and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15213 USA.

出版信息

Bioinformatics. 2015 Jun 1;31(11):1780-7. doi: 10.1093/bioinformatics/btv038. Epub 2015 Jan 24.

Abstract

MOTIVATION

Inference of gene regulatory networks from high throughput measurement of gene and protein expression is particularly attractive because it allows the simultaneous discovery of interactive molecular signals for numerous genes and proteins at a relatively low cost.

RESULTS

We developed two score-based local causal learning algorithms that utilized the Markov blanket search to identify direct regulators of target mRNAs and proteins. These two algorithms were specifically designed for integrated high throughput RNA and protein data. Simulation study showed that these algorithms outperformed other state-of-the-art gene regulatory network learning algorithms. We also generated integrated miRNA, mRNA, and protein expression data based on high throughput analysis of primary trophoblasts, derived from term human placenta and cultured under standard or hypoxic conditions. We applied the new algorithms to these data and identified gene regulatory networks for a set of trophoblastic proteins found to be differentially expressed under the specified culture conditions.

摘要

动机

从基因和蛋白质表达的高通量测量中推断基因调控网络极具吸引力,因为它能够以相对较低的成本同时发现众多基因和蛋白质的交互式分子信号。

结果

我们开发了两种基于评分的局部因果学习算法,这些算法利用马尔可夫毯搜索来识别目标mRNA和蛋白质的直接调控因子。这两种算法是专门为整合高通量RNA和蛋白质数据而设计的。模拟研究表明,这些算法优于其他现有的基因调控网络学习算法。我们还基于对源自足月人胎盘并在标准或缺氧条件下培养的原代滋养层细胞的高通量分析,生成了整合的miRNA、mRNA和蛋白质表达数据。我们将新算法应用于这些数据,并为一组在特定培养条件下发现差异表达的滋养层蛋白确定了基因调控网络。

相似文献

1
The assembly of miRNA-mRNA-protein regulatory networks using high-throughput expression data.
Bioinformatics. 2015 Jun 1;31(11):1780-7. doi: 10.1093/bioinformatics/btv038. Epub 2015 Jan 24.
2
7
Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
BMC Genomics. 2015;16 Suppl 2(Suppl 2):S12. doi: 10.1186/1471-2164-16-S2-S12. Epub 2015 Jan 21.
8
Identifying direct miRNA-mRNA causal regulatory relationships in heterogeneous data.
J Biomed Inform. 2014 Dec;52:438-47. doi: 10.1016/j.jbi.2014.08.005. Epub 2014 Aug 30.
10
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks.
BMC Bioinformatics. 2015;16 Suppl 9(Suppl 9):S7. doi: 10.1186/1471-2105-16-S9-S7. Epub 2015 Jun 1.

引用本文的文献

1
RNA Network Interactions During Differentiation of Human Trophoblasts.
Front Cell Dev Biol. 2021 Jun 3;9:677981. doi: 10.3389/fcell.2021.677981. eCollection 2021.
3
micro-RNAs dependent regulation of DNMT and HIF1α gene expression in thrombotic disorders.
Sci Rep. 2019 Mar 20;9(1):4815. doi: 10.1038/s41598-018-38057-6.
4
Expression and trafficking of placental microRNAs at the feto-maternal interface.
FASEB J. 2017 Jul;31(7):2760-2770. doi: 10.1096/fj.201601146R. Epub 2017 Mar 13.
5
Integration of MicroRNA, mRNA, and Protein Expression Data for the Identification of Cancer-Related MicroRNAs.
PLoS One. 2017 Jan 5;12(1):e0168412. doi: 10.1371/journal.pone.0168412. eCollection 2017.
6
Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles.
PLoS One. 2016 Apr 11;11(4):e0152860. doi: 10.1371/journal.pone.0152860. eCollection 2016.

本文引用的文献

1
The multilayered complexity of ceRNA crosstalk and competition.
Nature. 2014 Jan 16;505(7483):344-52. doi: 10.1038/nature12986.
2
Integrating sequence, expression and interaction data to determine condition-specific miRNA regulation.
Bioinformatics. 2013 Jul 1;29(13):i89-97. doi: 10.1093/bioinformatics/btt231.
3
Inferring microRNA-mRNA causal regulatory relationships from expression data.
Bioinformatics. 2013 Mar 15;29(6):765-71. doi: 10.1093/bioinformatics/btt048. Epub 2013 Jan 30.
4
Robustness of the hypoxic response: another job for miRNAs?
Dev Dyn. 2012 Dec;241(12):1842-8. doi: 10.1002/dvdy.23865. Epub 2012 Sep 28.
5
Using gene expression noise to understand gene regulation.
Science. 2012 Apr 13;336(6078):183-7. doi: 10.1126/science.1216379.
6
Learning the structure of gene regulatory networks from time series gene expression data.
BMC Genomics. 2011 Dec 23;12 Suppl 5(Suppl 5):S13. doi: 10.1186/1471-2164-12-S5-S13.
7
The timing and duration of hypoxia determine gene expression patterns in cultured human trophoblasts.
Placenta. 2011 Dec;32(12):1004-9. doi: 10.1016/j.placenta.2011.09.010. Epub 2011 Oct 8.
8
A Lasso regression model for the construction of microRNA-target regulatory networks.
Bioinformatics. 2011 Sep 1;27(17):2406-13. doi: 10.1093/bioinformatics/btr410. Epub 2011 Jul 8.
9
Effects of time point measurement on the reconstruction of gene regulatory networks.
Molecules. 2010 Aug 4;15(8):5354-68. doi: 10.3390/molecules15085354.
10
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
Cell. 2010 Apr 2;141(1):129-41. doi: 10.1016/j.cell.2010.03.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验