Suppr超能文献

用于具有事件发生时间终点的II期临床试验中设置样本量和选择分配比例的贝叶斯方法。

Bayesian methods for setting sample sizes and choosing allocation ratios in phase II clinical trials with time-to-event endpoints.

作者信息

Cotterill Amy, Whitehead John

机构信息

Medical and Pharmaceutical Statistics Research Unit, Department of Mathematics and Statistics, Lancaster University, Lancaster, U.K.

出版信息

Stat Med. 2015 May 20;34(11):1889-903. doi: 10.1002/sim.6426. Epub 2015 Jan 26.

Abstract

Conventional phase II trials using binary endpoints as early indicators of a time-to-event outcome are not always feasible. Uveal melanoma has no reliable intermediate marker of efficacy. In pancreatic cancer and viral clearance, the time to the event of interest is short, making an early indicator unnecessary. In the latter application, Weibull models have been used to analyse corresponding time-to-event data. Bayesian sample size calculations are presented for single-arm and randomised phase II trials assuming proportional hazards models for time-to-event endpoints. Special consideration is given to the case where survival times follow the Weibull distribution. The proposed methods are demonstrated through an illustrative trial based on uveal melanoma patient data. A procedure for prior specification based on knowledge or predictions of survival patterns is described. This enables investigation into the choice of allocation ratio in the randomised setting to assess whether a control arm is indeed required. The Bayesian framework enables sample sizes consistent with those used in practice to be obtained. When a confirmatory phase III trial will follow if suitable evidence of efficacy is identified, Bayesian approaches are less controversial than for definitive trials. In the randomised setting, a compromise for obtaining feasible sample sizes is a loss in certainty in the specified hypotheses: the Bayesian counterpart of power. However, this approach may still be preferable to running a single-arm trial where no data is collected on the control treatment. This dilemma is present in most phase II trials, where resources are not sufficient to conduct a definitive trial.

摘要

使用二元终点作为事件发生时间结局的早期指标的传统II期试验并不总是可行的。葡萄膜黑色素瘤没有可靠的疗效中间标志物。在胰腺癌和病毒清除方面,感兴趣事件的发生时间很短,因此不需要早期指标。在后者的应用中,威布尔模型已被用于分析相应的事件发生时间数据。针对单臂和随机II期试验,在假设事件发生时间终点服从比例风险模型的情况下,给出了贝叶斯样本量计算方法。特别考虑了生存时间服从威布尔分布的情况。通过基于葡萄膜黑色素瘤患者数据的一个说明性试验展示了所提出的方法。描述了一种基于生存模式的知识或预测进行先验设定的程序。这使得能够在随机设置中研究分配比例的选择,以评估是否确实需要一个对照臂。贝叶斯框架能够获得与实际使用的样本量一致的样本量。如果确定了合适的疗效证据,后续将进行确证性III期试验,此时贝叶斯方法比用于确定性试验的争议要小。在随机设置中,为了获得可行的样本量而做出的妥协是在指定假设中的确定性损失:即贝叶斯对应于检验效能的指标。然而,这种方法可能仍然比进行不收集对照治疗数据的单臂试验更可取。这种困境在大多数II期试验中都存在,因为资源不足以进行确定性试验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验